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EXECUTIVE SUMMARY 

This report discusses a number of areas for proposed improvements in the Georgia Statewide 

Travel Demand Model (GSTDM) based on the analysis of the 2017 National Household Travel 

Survey (NHTS) and its Georgia add-on portion. These improvements include: (1) development 

of a vehicle ownership model, (2) development of a time-of-day segmentation, (3) estimation 

and evaluation of a destination choice model, and (4) investigation of approaches for the 

inclusion of a travel mode choice model in the GSTDM. Considering the importance of these 

areas for model improvement, the research team conducted extensive reviews of the state of 

research and practice on the mentioned topics, augmented the 2017 NHTS data with other 

relevant data sources, developed appropriate methodologies, and presented the results and 

discussed their applicability in the GSTDM in this report. 

In the first task of this project, the research team developed a set of vehicle ownership models 

based on analysis of the 2017 NHTS Georgia add-on data. Considering that the 2017 NHTS 

records vehicle ownership at the household level and taking into consideration the behavioral 

importance of the factors influencing households’ vehicle-ownership decisions, the research 

team first developed a set of disaggregate models using both discrete choice (behavioral) 

modeling and data-driven modeling approaches. We identified the number of drivers/workers in 

a household in addition to income level, race, household composition, and built environment to 

be among the most influential factors influencing households’ vehicle-ownership decisions. 

Considering the aggregate structure of GSTDM, moreover, the team estimated a linear regression 

model whose results could be aggregated to the traffic analysis zone (TAZ) used in the GSTDM, 

which was informed by the more detailed disaggregate models. The output of this aggregate 
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model is the average vehicle ownership per each TAZ in the GSTDM, i.e., an outcome measure 

that can be readily incorporated in the other steps of the model (trip generation, distribution, and 

mode choice) to help improve model accuracy and sensitivity. 

In the second task of this project, the research team investigated methods to introduce time of 

day in the GSTDM. The latest version of the GSTDM does not include a time-of-day 

classification of trips, and only applies time of day as a postprocessing step following the trip 

assignment. After reviewing the different time-of-day methodologies in the literature, the 

research team selected a “trips-in-motion” approach where trips that span more than one time-of-

day period are accounted for more properly, as the most appropriate method to consider the 

impact of the time of trips on traffic congestion conditions during the various times of the day. 

Analyzing the temporal distribution of the 2017 NHTS data, we proposed four time-of-day 

periods, namely the AM peak (6 AM–10 AM), Midday (10 AM–3 PM), PM peak (3 PM–7 PM), 

and Night (7 PM–6 AM) periods. For each of these time periods, then, we computed the shares 

of trips, or time-of-day factors, by each period and trip purpose. Incorporating the proposed time-

of-day classification in the GSTDM will help generate a more realistic temporal representation 

of trips in the modeling process and will increase the overall modeling accuracy and sensitivity. 

In the third task of this project, the research team aimed to improve the trip distribution step in 

the GSTDM. This is a particularly important task as trip distribution is one of the largest sources 

of error in travel demand modeling. A gravity model is currently used to distribute trips in the 

GSTDM, and the research team evaluated the inclusion and performance of a full destination 

choice model in the GSTDM. We used multiple data sources to complement the 2017 NHTS 

dataset, and estimated 12 destination choice models, one for each time of day (AM peak, 

Midday, PM peak, Night) and trip purpose (HBW, HBO, NHB). We found that variables such as 
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distance, income, vehicle ownership, TAZ size variables (employment and population), and 

unique geographical features (such as parks and trails, presence of airports, colleges, and military 

bases) are influential factors in the destination choice. The models, in addition, showed 

promising results, and provide more flexibility in including socioeconomic characteristics in trip 

distribution. We further provided guidance on improving the models’ performances in the future 

with more detailed data. 

In the fourth task of this project, the research team evaluated the estimation of a mode choice 

model for the GSTDM. Considering the different nature of long- vs. short-distance trips, we 

segmented the data based on an already-defined criterion in the GSTDM: trips longer than 

50 miles are categorized as long-distance trips, and those shorter than 50 miles are categorized as 

short-distance trips. For short-distance trips, we constructed a mode choice dataset by extracting 

data for the possible alternative modes for each trip using information obtained from the Google 

API, and further augmented the dataset using other sources such as AllTransit data. We tested 

multiple model structures to get the best short-distance mode choice model, including 

multinomial logit (MNL) and nested logit models, and found that trip-specific variables such as 

travel time (in-vehicle and out-of-vehicle) and travel cost, socioeconomic variables such as 

vehicle availability, and transit accessibility influence mode choice decisions. For long-distance 

trips, however, the team could not estimate a satisfactory model because of the small number of 

long-distance trips in the dataset. We, however, provided exploratory insights into long-distance 

trip patterns, and discussed recommendations on remedying the lack of long-distance data such 

as merging data from other U.S. states. We discuss similarities of long-distance travel patterns to 

those in the state of Georgia in a few other U.S. states, and suggest a list of candidate states for 
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the analysis of long-distance trip patterns among the states that also participated to the NHTS 

add-on program. 

In the final task of the report, the research team also analyzed travel mode choice decisions at the 

tour level. The reason for this investigation is that individual trips are usually made as part of 

larger tours. Accordingly, analyzing trip mode choice at the trip level might lead to misleading 

results as the decision on what travel mode to use for a specific trip is usually conditional on the 

characteristics of the larger tour. Hence, the research team investigated the mode choice decision 

in the 2017 NHTS data using a tour-based modeling approach. In order to do that, we conducted 

a literature review on how to define a tour, and presented the best ways to categorize tours, 

define primary tour purposes, and structure the tour and trip mode choice models. While the 

implementation of a tour-based mode choice model is currently not feasible in an aggregate 

travel demand model such as the GSTDM, the tour-based mode choice results highlighted 

several important implications. One of these relates to the more reasonable value of travel time 

that is obtained from the tour-based mode choice model, compared to the trip-based model, 

which would encourage exploring further modeling improvement in the GSTDM toward more 

disaggregate approaches that could allow harvesting these behavioral details and would improve 

the ability to properly model travel demand in the state. 

As a result of the work conducted in this project, the research team presents four important 

recommendations and take-aways from this research: 

• The research team recommends that GDOT incorporates a vehicle ownership model in 

the GSTDM, replacing the current simplified approach that is included in the existing 

model. The vehicle ownership analyses presented in this report, carried out at the 
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disaggregate and aggregate (TAZ-level) levels, can inform this task. In particular, the 

TAZ-level vehicle ownership model estimated in this study is ready to be implemented in 

the GSTDM framework, to better support the trip generation, trip distribution, and mode 

choice steps of the model.  

• The research team recommends that GDOT incorporates the time-of-day segmentation in 

the GSTDM. Based on the results from this study, implanting the time-of-day 

segmentation following the trip-generation step seems an appropriate approach. The four 

time-of-day periods developed in this study can greatly help in more realistically 

modeling the trip distribution, mode choice, and assignment models, where time of day 

often significantly impacts the travel patterns. Further, time of day is fundamental when 

evaluation traffic congestion on the road network during the various times of the day.  

• The research team recommends that GDOT further explores the inclusion of a proper 

destination choice model for short-distance trips in the GSTDM. This modification 

appears justified by the large number of short-distance trips in the state, whereas keeping 

a gravity model for the long-distance trips appears appropriate. This report provides a 

detailed description on how to develop a destination choice model for short-distance trips 

in the GSTDM, and the models (by trip purpose and time of day) estimated in this study 

showed promising results. These models may also be further enhanced based on some of 

the recommendations included in this report. 

• The research team recommends that GDOT further explores the inclusion of an improved 

mode choice model in the GSTDM. While this study evaluated both the estimation of a 

trip-based and a tour-based mode choice model for short-distance trips in the state of 
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Georgia, the results could be used to inform the development of an aggregate mode split 

component for the GSTDM. 

• Future improvements in the GSTDM could explore the possibility to upgrade the 

modeling framework from a trip-based to a tour-based or activity-based modeling 

approach, similar to what has been done by other U.S. states (e.g., California). This 

model upgrade could enable the development of more detailed and disaggregate model 

components, which could more carefully capture the nuanced nature of travel demand–

related decisions and their impacts on traffic patterns and investment decisions.  
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CHAPTER 1. INTRODUCTION 

The Georgia Department of Transportation (GDOT), in collaboration with its consultants, has 

developed a statewide travel demand model to assist with the formulation of statewide 

transportation plans. The Georgia Statewide Travel Demand Model (GSTDM) incorporates both 

freight and passenger travel demand forecasting components, and serves a variety of purposes, 

including, but not limited to, the estimation of intercity passenger and truck travel volumes, 

interstate and state highway corridor volumes, changes in travel flows on major corridors due to 

changes in land use or economic policies, etc. The model is quite comprehensive and serves as 

an effective planning tool for the state (Peevy and Kassa 2012). The GSTDM is maintained and 

updated by the technical staff from the GDOT Office of Planning in cooperation with a team of 

consultants using updated information about transportation patterns, sociodemographic data, and 

observed traffic flows available from multiple sources. These sources include other state and 

federal agencies and local metropolitan planning organizations (MPOs). The current version of 

the model covers the entire 48 continental U.S. states and includes 3,770 traffic analysis zones 

(TAZs), of which 3,243 are in Georgia. The highway network includes a total of 80,400 miles, of 

which 18,600 are in the state of Georgia. With the recent updates introduced in the GSTDM, the 

base year has been updated to 2015 as part of the maintenance program carried out by a team of 

GDOT consultants. 

The current maintenance and updates to the GSTDM, however, do not encompass a variety of 

modern solutions that have been developed in statewide models to more accurately predict travel 

demand. As an example, the Travel Forecasting Resource (TFR) online repository1 provides an 

 

1 https://tfresource.org/topics/Statewide_models.html 
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overview of the state of the practice in statewide modeling and provides a map depicting 

statewide model development efforts across the nation. Many of these modern developments and 

solutions use realistic travel behavior assumptions and up-to-date data sources that help model a 

variety of transportation services and options with solutions that are cost effective for a statewide 

model.  

The availability of the 2017 National Household Travel Survey (NHTS) data and the exclusive 

Georgia add-on that was funded by the Georgia Department of Transportation, specifically, 

provides a prime opportunity for GDOT to employ the up-to-date datasets in conjunction with 

more sophisticated approaches to upgrade the current GSTDM and improve the model 

specifications to better forecast travel demand and traffic patterns in the state. 

The principal investigator of this project, along with two of the research team members, worked 

at a previous “Phase 1” study (GDOT Research Project 16-12, PI: Dr. Circella) that helped the 

GDOT Office of Planning integrate the GSTDM with the regional models in the state, making 

the statewide model consistent with the regional models used by the 14 MPOs in Georgia whose 

models are directly maintained by GDOT.  

Phase 2 of the study, undertaken in this project, and summarized in this report, explores the 

development of several improvements in other components of the GSTDM, including improving 

the understanding of how vehicle ownership varies by sociodemographic characteristics and 

geographic location, adding an improved temporal resolution of the GSTDM (introducing the 

“time of day” in which trips are modeled, instead of the 24-hour average travel forecasts 

produced by the current model), harvesting the opportunities offered by recently collected data 

sources, including the new NHTS, to improve the representation of transportation infrastructure 
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and services, and improving the trip distribution and mode choice components of the model. 

There is a critical need to integrate these improvements in the newer version of the statewide 

travel demand model to produce better travel forecasts and inform transportation investment 

decisions in the state. This report discusses some opportunities and provides recommendations 

for such model improvements.  

OVERVIEW OF THE RESEARCH 

Under the activities of this project, the research team worked closely with the GDOT Office of 

Planning to explore several areas for the GSTDM improvement. We designed five main tasks to 

achieve this goal: 

Task 1. Investigate improved approaches to account for vehicle availability in various 

geographic regions in the state, among different socioeconomic and demographic groups, and in 

the presence of various land use/neighborhood types in the GSTDM model. As part of this task, 

the project team reviewed the approaches used in other statewide and regional travel demand 

models to account for vehicle ownership, focusing in particular on applications to four-step 

models that can be more similar to the GSTDM modeling framework. The research team will 

build on the preliminary findings from the GDOT Research Project, “Analysis of the Georgia 

Add-on to the 2016–2017 National Household Travel Survey” and further analyze the 2017 

NHTS add-on data for Georgia, with the aim of estimating a vehicle ownership model that can 

account for variation in household vehicle ownership by geographic region, neighborhood type, 

and SE characteristics.  

Task 2. Investigate and introduce time of day in the GSTDM. In this task, the project team 

reviewed the modeling approaches adopted in other regional and statewide travel demand 
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forecasting models, and proposed a modeling solution that will model travel demand in the 

GSTDM framework separately for four main time periods: AM peak, Midday, PM peak, and 

Late evening/Off-peak. The existing GSTDM only produces 24-hour daily travel forecasts, and 

GDOT needs postprocessing methods to achieve specific time-of-day outputs. The revised 

approach of this task, therefore, presents a major improvement to the GSTDM, and will align it 

with other state-of-the-art statewide modeling frameworks. 

Task 3. Investigate and evaluate the inclusion of a destination choice model to replace the 

current Gravity trip distribution model in the GSTDM. In this task, we reviewed the existing 

modeling approaches used in other statewide and regional four-step travel demand models. We 

analyzed the 2017 NHTS add-on data for Georgia and other available data sources, with the aim 

of analyzing trip destination patterns by time of day and trip purpose, and proposed ways to 

implement such improvements in the trip destination modeling processes in the GSTDM. 

Task 4. Evaluate the inclusion of a mode choice component in the GSTDM framework. The 

current version of the GSTDM does not properly account for travelers’ choices on the travel 

modes that are used for various trips. In this task, the research team reviewed the existing 

literature and the modeling approaches used in other statewide and regional travel demand 

models to account for travel mode choice. We analyzed data from the 2017 NHTS add-on data 

for Georgia, complemented the NHTS add-on data with additional information for commuting 

and noncommuting trips (e.g., computing travel time and distances for unchosen alternatives) 

and estimated a mode choice model that accounts for the impacts of socioeconomic variables, 

trip characteristics, geographic location and land use variables on the travel mode choice. 
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Task 5. Investigate additional improvements to the GSTDM. Based on the results of task 4, this 

task explored the estimation of a tour-based mode choice model as opposed to the trip-based 

model of the previous task. The logic and benefits of defining tours and incorporating them in 

the mode choice model are discussed, and model development steps, results, and insights are 

presented. 

DOCUMENT STRUCTURE 

This report is structured around each of the tasks discussed in Overview of the Research above. 

Before we begin discussion of the tasks, we provide a brief exploration of the main dataset used 

in this project in chapter 2. In each of the subsequent chapters, then, we detail the steps taken to 

achieve the goals of one of the tasks described above and present the results and possible 

implementation guidelines for the GSTDM. We end the report with our conclusions in chapter 8, 

and provide a summary of the developed analyses and associated recommendations for further 

improvement of the GSTDM.  
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CHAPTER 2. DATA EXPLORATION 

Although GDOT Report 18-24 (Kash, Mokhtarian, and Circella 2021) provides an extensive 

exploration and descriptive statistics for the 2017 NHTS Georgia add-on data, this chapter 

provides some specific data exploration more related to the goals of this report. For a complete 

descriptive statistic of the 2017 NHTS Georgia add-on data, therefore, we refer interested readers 

to Kash, Mokhtarian, and Circella (2021). 

The 2017 NHTS household-level dataset is the primary data for estimating the vehicle ownership 

models in this project (task 1), while the person- and trip-level data were used in the other tasks. 

Consequently, in this chapter we first present the characteristics of the household-level data, and 

then discuss the person- and trip-level data. Each chapter then contains additional descriptions of 

more specific data sources and considerations related to the analysis done in that chapter.  

NHTS HOUSEHOLD DATA 

Figure 1(a) shows a distribution of this variable in the Georgia portion of the 2017 NHTS. The 

share of households with no vehicles is the smallest at 6.9 percent, while households with 1 to 

2 vehicles constitute the majority of the sample households. The overall average vehicle 

ownership (VO) in the state of Georgia is 1.92 vehicles per household. 
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(a) 

 

(b) 

Figure 1. Bar graphs. Distribution of household vehicle ownership 

in 2017 NHTS Georgia portion (N=8,610). 

Figure 1(b) investigates how VO levels differ based on built environment characteristics. As 

expected, we can see that the urban Georgia households tend to own fewer vehicles than their 

rural counterparts. The shares of households with 0 or 1 vehicle in their household are 

considerably lower in rural areas, while the shares of 3- and 4+-vehicle households in such areas 

are considerably higher. Overall, and on average, the average VO in urban areas is 

approximately 1.80 vehicles, while the average VO in rural areas approximately equals 2.35.  
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Furthermore, table 1 presents the summary statistics of the dataset derived from the NHTS. As 

shown in the table, it appears around a third of the sample households can be considered as low 

income; whereas, approximately 22 percent of the sample households fall in the high-income 

category. For the variables representing household composition, it appears that 19 percent of the 

sample is a single-person household and another 20.8 percent is a two or more persons household 

with no children. To account for the adoption of emerging travel mode, we incorporate a count 

indicator of the frequency of using taxi or ride hailing in the last week. The mean of this variable 

is 0.42, indicating that only a fraction of the sample is a frequent patron of such services. 

Table 1. Summary statistics of the sample households derived from 

the 2017 Georgia NHTS (n = 8,611). 

Variable Mean Std. Dev. Min Max 

Low HH* Income (<$35k), binary 0.325 0.468 0 1 

High HH Income (>$100k), binary 0.221 0.415 0 1 

1 Person HH – No Children, binary 0.190 0.392 0 1 

2+ Person HH – No Children, binary 0.208 0.406 0 1 

No. of HH Workers 0.971 0.866 0 5 

No. of Drivers 1.660 0.765 0 7 

Frequency Taxi/Ridehailing 0.423 1.883 0 20 

* HH = Household 

NHTS PERSON AND TRIP DATA 

The investigations in chapter 4, chapter 5, and chapter 6 are primarily of the short-distance trips 

portion of the NHTS; accordingly, this section provides a number of descriptive statistics on the 

short-distance data. The research team selected a number of indicators that could be evaluated 
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among the 2017 NHTS, 2014–2018 American Community Survey (2018 ACS, 5-year estimates), 

and the Decennial Census 2010 data, in order to provide a more complete picture of the dataset.  

One of the indicators the research team investigated was age category. As shown in figure 2,  the 

NHTS appears to have a higher share of elderly population but lower share of the younger 

population. This might not be surprising since the NHTS targets travelers capable of transporting 

themselves and, thus, the portion of younger individuals is substantially lower than the 

population.  

 

Figure 2. Bar graph. Age category in the short-distance trips dataset (2017 NHTS) 

compared to ACS 2018 and Decennial Census 2010. 

Another indicator that the research team investigated was the race category. As shown in 

figure 3, the NHTS has a higher share of White individuals and lower share of African American 

individuals than the Census.  

 

Figure 3. Bar graph. Race category in the short-distance trips dataset (2017 NHTS) 

compared to ACS 2018 and Decennial Census 2010. 
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Figure 4, moreover, depicts the distribution of median income between the 2017 NHTS and the 

ACS 2018.2 As shown in figure 4, the samples in the short-distance trips dataset tend to have 

higher median income than the population estimates based on the ACS 2018. Specifically, the 

median income in the short-distance trips dataset was $62,500 while the median income 

according to population estimates was $52,600.  

 

Figure 4. Area graph. Median income in the short-distance trips 

dataset (2017 NHTS) compared to ACS 2018. 

Figure 5 shows an additional dataset assessment indicating that the samples in the short-distance 

trips dataset tend to have lower average household size than the population estimates derived 

from the ACS 2018.  

 

2 The median income indicator is not reported in the Decennial Census. 
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Figure 5. Area graph. Average household size in the short-distance trips 

dataset (2017 NHTS) compared to ACS 2018.  
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CHAPTER 3. INCORPORATING VEHICLE OWNERSHIP 

MODELS IN THE GSTDM 

Understanding factors associated with vehicle ownership is of critical importance to travel 

demand models (TDMs), where trip generation, distribution, and mode choice can be directly 

affected by this household-level variable. Considering the importance of vehicle ownership 

models, and the current absence of such a model in the GSTDM, this task aims to investigate and 

develop a set of VO models based on the 2017 NHTS for the state of Georgia. To this aim, we 

develop and estimate two categories of models: one based on the disaggregate, household-level 

data available in the 2017 NHTS, and one based on aggregate TAZ-level units that may be 

directly used in the GSTDM. Disaggregate models are able to use the full potential of the 

available data and present a more detailed and behaviorally explainable choice of vehicle-

ownership levels among the Georgia households. The downside of these models, however, is 

their incompatibility with the GSTDM model structure, which is based on aggregate-level TAZ 

units. We, therefore, first estimate disaggregate models (behavioral and data-driven) to gain a 

better insight into how the Georgian households make decisions regarding VO, and then use the 

disaggregate models and translate their structure and results to be compatible with the GSTDM 

TAZ-based structure. 

An initial investigation of vehicle ownership in the 2017 NHTS Georgia add-on data is presented 

in GDOT Report 18-24 (Kash, Mokhtarian, and Circella 2021). The findings in chapter 1 of 

Report 18-24, which aided the modeling work presented in this chapter, shed light on vehicle 

availability, usage, and fleet characteristics among Georgian households, and provide a 

complementary read to the results and discussions presented here. 
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LITERATURE REVIEW  

As one of the most researched topics in transportation literature, a wealth of studies exist on 

vehicle ownership. In this literature review, we will focus on the current studies that we consider 

most relevant to the purpose of this work. 

Several studies on vehicle ownership in recent years have used behavioral class models. For 

instance, a 2013 study exhibits the application of a latent class multinomial logit (MNL) model 

to estimate factors associated with vehicle type ownership (Beck et al. 2013). Using data from 

Sydney, Australia, which was collected through an interviewer-assisted online survey platform, 

their study seeks to predict a given respondent choice of vehicle type, i.e., petrol, diesel, or 

hybrid. In doing so, the authors use a latent class approach to deal with the “preference 

heterogeneity across classes” as an attempt to account for the unobserved factor. With emphasis 

on assessing the influence of attitudinal factors, the results suggest the relative importance of 

these factors and, therefore, policies aimed to promote increasing adoption of environmentally 

friendly vehicles need to account for inducing potential attitudinal changes.  

The application of the latent class approach was also the highlight of a 2014 study analyzing car 

ownership in Quebec City, Canada (Anowar et al. 2014). Using a family of behavior class 

models in the form of latent segmentation-based ordered logit (LSOL) and latent segmentation-

based multinomial logit (LSMNL), the authors present estimation results indicating the factors 

associated with household-level car ownership, i.e., no car, one car, two cars, or more, and test 

which latent class model performs relatively better than the other. The results from latent class 

analysis indicate two segments of the population captured in the data: transit independent (TI) 

and transit friendly (TF). Estimation results suggest that several exogenous factors contribute to 
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increased car ownership level, e.g., higher number of employed adult household members, lower 

number of children, and lower residential density in the neighborhood the households live in. 

Moreover, the authors discover that the LSMNL model performs slightly better than the LSOL 

model.  

In addition to latent class approach as a subset of behavioral class models as presented above, 

several studies have used the application of mixed logit models (MLMs). This approach is the 

highlight of a 2003 study assessing the household automobile transactions using data from the 

Toronto Area Car Ownership Study (TACOS) (Mohammadian and Miller 2003). While not 

necessarily related to vehicle ownership, a comparison between a traditional multinomial logit 

model, a mixed logit model, and a latent class model (LCM) was the centerpiece of another 2003 

study and, therefore, is important to discuss here (Greene and Hensher 2003). In their study, the 

authors conduct a comparison between the models using data from New Zealand derived from a 

survey asking car drivers their preferred road environment for long-distance trips. Estimation 

results indicate that both MLM and LCM outperform the MNL by virtue of evaluating the log-

likelihood indicators. Assessing the preferred model between MLM and LCM, however, presents 

a rather impossible task since “each has its own merits.” From a purely numerical indicator and 

perhaps only “on this occasion,” however, it appears that LCM offers a “stronger statistical 

support” than the MLM (Greene and Hensher 2003). 

DATA 

We presented an exploratory analysis of the NHTS household level data in chapter 2. This 

section provides more specific data sources and considerations related to the task described in 

this chapter. 
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Considering that our final goal for this task is to estimate a vehicle ownership model that can be 

used in an aggregate model, the research team needed to be able to translate the models based on 

the disaggregate NHTS data to the aggregate GSTDM structure. In doing so, one of the primary 

considerations for the research team was matching available NHTS variables with their 

aggregate counterparts in the 2018 ACS dataset. Following this consideration, and after 

comparing the available variables in both datasets, the indicators employed in the aggregate 

linear regression model are income, household size, number of employed household members, 

and housing density.  

The research team also used external datasets to complement the 2017 NHTS data. These 

additional variables are indices representing transit services in a given block group derived from 

the AllTransit data provided by the Center for Neighborhood Technology. These indicators 

include the Transit Connectivity Index and the AllTransit performance score. The Transit 

Connectivity Index is defined as (AllTransit 2018):  

“…the sum of buses/trains per week scaled by overlap of 1/8-mile rings and 

weighted for each ring (6 for bus and rail, or ¾ mile) for every stop whose ring 

intersects the block group. The scaling was optimized by using regression to fit for 

percent of transit used for journey to work. The result is scaled from 0–100, with 

zero being no transit and 100 being the best block group in the county.”  

Along a somewhat similar line, the AllTransit performance score is defined as: 

“…a comprehensive score that looks at connectivity, access to land area and jobs, 

frequency of service, and the percent of commuters who use transit to travel to 

work. While availability of service and frequency are important aspects of transit, 



 

22 

the connection it provides to jobs and other destinations in the region is central in 

creating an effective transit system.” 

METHODOLOGY 

In this section, we elaborate on the methodologies for each model family focusing on the 

traditional MNL and latent class MNL as the estimation approach under the behavioral-class, and 

random forest as a family of data-driven, machine learning techniques.  

Behavioral Modeling Approach 

Behavioral models have long been developed and used in the econometric and, subsequently, 

travel behavior studies. Depending on the type of the variable of interest, there are several 

econometric models that can be employed for analysis. Vehicle ownership can be assumed as 

either a continuous numeric variable, a count variable, or a discrete variable. Studies point to the 

discrete assumption for the vehicle ownership as a more appropriate variable type assumption 

and, therefore, recommend conducting vehicle ownership analyses on a discrete choice model 

(Bhat and Pulugurta 1998).  

When considering vehicle ownership as a continuous numeric variable, a linear regression 

modeling (LRM) framework can be used. Since LRMs are linear in nature, we can aggregate 

their results to the TAZ level for the GSTDM structure. In contrast, dynamic causal models 

(DCM) follow a nonlinear structure, and aggregation of their structure would not yield accurate 

unbiased estimates. We, therefore, first estimate DCM-based models to better capture and 

explain households’ choices, and then develop an LRM to be used further for the GSTDM 

purposes. 
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Linear Regression Models 

Linear regression models are perhaps the most simple and well-known modeling technique used 

in transportation literature and other fields. LRM is a suitable technique when the variable being 

modeled is continuous (i.e., numeric). In our context, we can consider the number of vehicles 

owned by a household (0, 1, 2, 3, etc.) as continuous, and use this modeling framework to find 

the factors influencing a household vehicle count. Equation 1 shows a general formulation of an 

LRM: 

𝑦𝑖 = 𝛽0 +  𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ = ∑ 𝑋𝑖𝑘𝛽𝑖𝑘

𝑘

 
(1) 

In equation 1, 𝑦𝑖 is the dependent variable’s value associated with an individual 𝑖, 𝛽𝑘 is the 

coefficient associated with variable 𝑘, and 𝑋𝑖𝑘 is the value of variable 𝑘 for individual 𝑖. 

Ordinary least squares (OLS) is used to find the unbiased and efficient coefficients of equation 1. 

Discrete Choice Models 

Discrete choice models have been widely used in the transportation literature, in addition to other 

fields, to model discrete choices or categorical variables. This class of models is based on the 

definition of a utility for each choice or level of categorical variable and uses the utility 

parameter to assess the probability by which an option is chosen. Equation 2 shows the general 

definition of a utility function for a choice or level of categorical variable: 

𝑈𝑖,𝑛 = 𝑉𝑖,𝑛 +  𝜀𝑖,𝑛 (2) 

In equation 2, 𝑈𝑖,𝑛 denotes the utility of option 𝑖 for person 𝑛, 𝑉𝑖,𝑛 denotes the deterministic 

portion of the utility function for the option, and 𝜀𝑖,𝑛 is the random portion (error term) of the 
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function. The deterministic portion of the utility is often modeled as a linear-in-parameter 

function of observed variables in the data (∑ 𝑋𝑘𝛽𝑘𝑘 ). Assuming a Gumbel distribution for the 

error term in the utility function, we may compute the probability of choosing option 𝑖 using a 

logit formulation: 

𝑝(𝑘 = 𝑖) =
exp (𝑉𝑖)

∑ exp (𝑉𝑘)𝑘  
 

(3) 

Equation 3’s framework is known as the multinomial logit model, as well. In the context of this 

task, we use the MNL model to investigate vehicle ownership level decisions (4 levels) within 

household in the 2017 NHTS Georgia add-on dataset. 

Latent-class Discrete Choice Models 

Latent-class discrete choice models are an extension of the traditional MNL models and allow 

for a greater flexibility in dealing with heterogeneity in the data. This class of models, as 

opposed to the MNL, simultaneously identify latent homogenous subsegments (classes) of the 

sample and estimate a separate MNL for each latent class. Equation 4 shows the mathematical 

formulation of a latent-class MNL model: 

𝑝(𝑦|𝑥, 𝑧) = ∑ 𝑝(𝑐|𝑧)

𝐾

𝑐=1

𝑝(𝑦|c, 𝑥) 
(4) 

In equation 4, 𝑝(𝑐|𝑧) denotes the membership submodel of the latent-class MNL, with 𝑐, the 

latent classes, modeled directly as a function of 𝑧, the covariates, or the membership model’s 

variables. The term 𝑝(𝑦|𝑐, 𝑥), on the other hand, expresses the outcome submodel of the latent-

class MNL, where the dependent variable 𝑦 (VO in our context) is modeled as a function of 𝑥, a 

set of explanatory variables, given the latent classes. 
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Data-driven Modeling Approach 

Data-driven or machine learning models are a newer class of models developed largely by 

computer scientists and statisticians with a focus on handling large data and improving model 

prediction accuracy. This class of models has become popular in other fields, as well, with 

several studies in the transportation literature applying them and comparing their results with 

traditional behavioral approaches. In this task, subsequently, we aimed to test the model 

performance of data-driven models in estimating vehicle ownership and evaluate how they 

compare with the behavioral models used in this task. To our knowledge, this is the first time this 

comparison has been used in a study of vehicle ownership, given that previous studies tend to 

focus more on mode choice (Zhang and Xie 2008; Ermagun, Rashidi, and Lari 2015). Below, we 

briefly review the machine learning algorithms selected for this study. 

Random Forest 

Random forest, introduced by Breiman (2001), is a supervised machine learning algorithm 

popular for its ability to handle both regression and classification problems, low number of 

tuning parameters, and training and prediction speed (Breiman 2001). This class of algorithms is 

an extension and improvement on the decision tree algorithm where overfitting and correlated 

independent variables (features) could pose a problem. Denoting the vector of explanatory 

variables as 𝑋 and the dependent variable as 𝑌, the goal of the algorithm is to find a prediction 

function 𝑓(𝑋) that minimizes the expected value of a defined loss function 𝐿(𝑌, 𝑓(𝑋)). In the 

case of a regression application, the squared error loss is usually chosen as the loss function, 

while in a classification application, a zero-one function is chosen, and the minimization of such 

loss function results in the estimated model parameters (Cutler, Cutler, and Stevens 2011). The 

prediction function 𝑓(𝑥) is constructed as a collection of decision tress whose combined output 
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(averaged in the case of regression, and most frequently predicted class in the case of 

classification) forms the final output of 𝑓(𝑥). Further information on splitting criterion, stopping 

criterion, and other details may be found in Cutler et al. (2011). 

Although machine learning models are less conducive to interpretation and inference, we can use 

a number of methods to investigate the marginal impact and importance of the explanatory 

variables in the modeling process. Feature importance, as one of these techniques, can assign a 

relative importance to each variable, quantifying its relative contribution in the prediction of the 

dependent variable. At each node of a tree, an impurity index, quantifying the homogeneity with 

respect to the levels of the dependent variable, is computed. The feature importance associated 

with a specific variable, then, is calculated as the decrease in impurity of a node weighted by 

share of cases in that node as a result of partitioning on that variable. A higher feature 

importance, naturally, is associated with a higher association between that variable and the 

output. 

RESULTS 

Disaggregate Models 

In this section, we present estimation results from the behavioral-class approach, i.e., traditional 

MNL and latent class MNL, and subsequently data-driven approach, i.e., random forest. We split 

the dataset into two sets of training and test sets, each comprising 80 percent and 20 percent of 

the total dataset, respectively, and compare the prediction accuracy of the models on the test set.  
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Traditional MNL 

We first estimate and present the results of the traditional MNL as shown in table 2. The set of 

explanatory variables used in this model include sociodemographics and built environment, and 

this model shows an overall reasonable goodness of fit (EL
2 = 0.406). 

With respect to the results, we find most of the model’s coefficients agreeing with our 

expectation. With respect to race, we see that households identifying as White are more likely to 

own more vehicles compared to those identifying with other races. A low-income household, 

furthermore, is more likely to own fewer vehicles compared to a higher income household, a 

result that agrees with expectations and previous findings. Moreover, a higher number of drivers 

in a household increases the probability of a household having more cars.  

With respect to travel behavior, we see that a higher frequency of using taxi/ridehailing services 

is associated with owning fewer vehicles in the household. While drawing causality conclusions 

between VO and ridehailing usage is not possible using this analysis, we nevertheless see a 

negative association between the two variables in our model. 

Finally, we see a clear impact of built environment on household VO. Those households living in 

rural areas are more likely than their urban/suburban counterparts to own more vehicles. A 

higher housing density, furthermore, is associated with a lower number of vehicles per 

household. 
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Table 2. Multinomial logit regression (N=6205). 

Variable 

0 Vehicle 1 Vehicle 2 Vehicles 3+ Vehicles 

Coef. 
p-

value 
Coef. 

p-

value 
Coef. 

p-

value 
Coef. 

p-

value 

Constant 6.397 <0.01 6.192 <0.01 3.086 <0.01 Ref. - 

White Race -1.194 <0.01 -0.115 0.300 -0.076 0.390 Ref. - 

Low HH Income 

(<$35K) 
3.298 <0.01 1.700 <0.01 0.553 <0.01 Ref. - 

No. of Drivers 

in the HH 
-7.332 <0.01 -3.822 <0.01 -1.324 <0.01 Ref. - 

Frequency of 

Using 

Taxi/Ridehailing 

0.198 <0.01 0.047 0.150 0.034 0.210 Ref. - 

Rural Dweller -1.625 <0.01 -1.050 <0.01 -0.525 <0.01 Ref. - 

Housing Density  0.0004 <0.01 0.0003 <0.01 0.0002 <0.01 Ref. - 

LLEL=-8601.96 

LLc=-7636.24 

LLmodel=-5096.62 

EL,adjusted
2=0.406 

C,adjusted
2 = 0.331 

 

 

Latent-class MNL 

As mentioned, the latent class approach aims to capture heterogeneity in the data by dividing the 

sample into several probabilistic clusters based on a certain set of parameters. We hypothesize 

that those living in different built environments tend to make decisions differently regarding their 

VO, and estimating one set of coefficients for everyone in the sample could not be an appropriate 

approach. We, therefore, used the built environment variables as the model covariates, and 

estimated latent class models with different numbers of clusters. A schematic of the overall latent 

class model is presented in figure 6. 



 

29 

 

Figure 6. Schematic. Latent class of this study. 

Based on the AIC33 statistic and model interpretability, we picked the latent class model with 

three clusters. Table 3 shows a summary of the membership model. Cluster 1, consisting of 

8.6 percent of the total sample, is almost devoid of rural dwellers, and has the highest average 

housing density of all the clusters. The households in this cluster, with an average of 

1.38 vehicles per household, also own the fewest number of vehicles on average compared to the 

other clusters. Cluster 2, on the other hand, has the highest share of rural dwellers of all the 

clusters, and accordingly has the lowest average housing density of all the clusters, too. The 

average number of vehicles owned in this cluster, as expected, is the highest of all clusters at 

2.52 per household. Finally, cluster 3, being the largest cluster, shows to have characteristics in 

between those of its counterparts, with its share of rural dwellers and housing density in between 

clusters 1 and 2. The average number of vehicles per household, similarly, is between that of the 

other two clusters. 

 

3 Akaike information criterion. 
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Table 3. Membership model parameters and descriptive statistics. 

Model Variables 

Descriptive Statistics per Class Membership Model Parameters 

Variable Means/Share per Cluster Class 1 Class 2 Class 3 

Class 1 

(8.6%) 

Class 2 

(35%) 

Class 3 

(56.4%) 
Coef. Coef. Coef. 

Constants - - - -1.796 -0.335 0 

Covariates       

Rural Dweller 0.004 0.42 0.16 -3.810 0.866 0 

Housing Density 

(person/mi2) 
1573.10 496.66 1132.63 0.0001 -0.0005 0 

Outcome Variable       

HH Vehicle Count  1.38 2.52 1.72 - - - 

 

Having discussed the membership model results, we now turn to the outcome model. Table 4 

presents the estimation results from the latent class MNL model. The results show a more 

significant impact of race on clusters 2 and 3, which have a larger share of rural dwellers. Those 

households identifying as White are more likely to own a higher number of vehicles, agreeing 

with the overall results of the MNL model. With respect to income, we see an overall similar 

trend compared to the MNL model, with those households with lower income more likely to own 

fewer vehicles. The latent class model, however, shows that in cluster 2, with a large share of 

rural dwellers, low-income households are more likely to own 1 vehicle, as opposed to the other 

two classes where low-income households are more likely to own 0 vehicle. The number of 

drivers in the household, in addition, shows a string association with the household number of 

vehicles in clusters 2 and 3, indicating that a higher number of drivers in the household is 

associated with a higher number of vehicles. This effect, however, shows to be statistically weak 

in cluster 1, although the coefficients’ signs and magnitudes do point to the same conclusion. 

Finally, the impact of taxi/ridehailing usage frequency again points to an overall similar 
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conclusion compared to the MNL model, albeit with more nuance. In cluster 1, with few rural 

dwellers, we see that higher frequency of using such services is associated less with households 

with 1 or 2 vehicles, but more with 0 and 3+ vehicles. This contradictory result can point to the 

different demographics in nonrural areas who use these services. Studies on ridehailing services 

point to the younger generation and the higher income as more frequent users of ridehailing 

services. In clusters 2 and 3, we see that those who use taxi/ridehailing more often tend to own 

fewer vehicles, although in cluster 2, with more rural dwellers, a higher usage is associated more 

with 1-vehicle households, while in cluster 3, this variable is associated more with 0-vehicle 

households. 

From the perspective of model performance, we see that the latent class model marginally 

outperforms the traditional MNL model by a few percentage points after controlling for 

additional model parameters. 
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Table 4. Latent class multinomial regression (N=6205). 

Variables Cluster 
0 Vehicle 1 Vehicle 2 Vehicles 3+ Vehicles 

Coef. Coef. Coef. Coef. 

Constant 

Cluster 1 -0.292 2.567 2.382 Ref. 

Cluster 2 8.158** 2.756*** 2.263*** Ref. 

Cluster 3  19.787*** 
 17.693*** 

 8.734*** 
 Ref.  

White Race 

Cluster 1 -0.110 0.776 0.869 Ref. 

Cluster 2 -5.022* -0.304 -0.271 Ref. 

Cluster 3  -1.678* 
 -0.158  -0.084  Ref.  

Low HH Income 

Cluster 1 4.095** 1.188 0.085 Ref. 

Cluster 2 1.754 2.143*** 0.704*** Ref. 

Cluster 3  5.880*** 
 3.957***  1.364* 

 Ref.  

No. of HH Drivers 

Cluster 1 0.347 0.887 1.164 Ref. 

Cluster 2 -14.460** -2.971*** -1.419*** Ref. 

Cluster 3  -15.564***  -9.706*** 
 -3.604*** 

 Ref.  

Frequency of Using 

Taxi/Ridehailing 

Cluster 1 -0.118 -1.020*** -1.055*** Ref. 

Cluster 2 0.278 0.526** 0.511** Ref. 

Cluster 3 0.319*** 0.125 0.0008 Ref. 

LLEL=-8601.96 

LLc=-7636.24 

LLmodel=-4922.73 

EL,adjusted
2=0.422 

C,adjusted
2 = 0.349 

 

   

 ***: p-value ≤0.01, **: p-value ≤0.05, *: p-value ≤0.10 

Random Forest 

In estimating the random forest model, we used a grid search with k-fold cross validation to find 

the optimum values of the model’s hyperparameters, including the number of trees, maximum 

depth of a tree, minimum number of samples required to split a node, and minimum sample for a 

leaf node. We present the results of the finetuned model here. We further tested the model on the 

test data, as well.4 

 

4 Specifically, we apply these following parameters: RFClassifier (number of trees=300, max tree depth=20, min 

sample for splitting nodes=30, min sample for a leaf node=3). 
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Here, we first investigate the feature importance of the variables in the model. Figure 7 presents 

all the variables with a relative feature importance greater than 0.01. The relative importance of 

each variable shows to meet the expectation, with the number of drivers in the household 

showing to be the variable that has the largest importance in predicting VO. This impact also 

agreed with the model estimation from the traditional MNL model, where the inclusion of the 

number of HH drivers significantly improved the model fit. The influence of household size and 

number of HH workers, additionally, come second and third. It should be noted that due to the 

high correlation between these variables and number of drivers in the household (greater than 

0.50), we did not include the three variables together in the model so as not to cause 

multicollinearity issues. Random forest, however, can handle highly correlated variables without 

issue. 

 

Figure 7. Bar graph. Feature importance plot of the random forest model. 

Comparison of Prediction Accuracy Between Models 

Having estimated the three models (i.e., traditional MNL, latent class MNL, and random forest), 

the subsequent step is to compare the prediction accuracy results between models. As mentioned, 
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we used the train and test method by 20 percent of the dataset to the test set, and ran the 

estimated models on the test set and compared their prediction accuracy. 

The prediction accuracy results as shown in table 5 suggest all three models score within the 

same range, with random forest scoring the highest, at 69 percent. The latent class MNL, at 

68.3 percent, has a prediction accuracy very close to that of the random forest, while the 

traditional MNL scores the lowest, at 66.9 percent. The finding that the latent class MNL 

provides a greater prediction accuracy than traditional MNL might not be surprising, given 

previous studies have found that to be the case when comparing more advanced MNLs against 

the traditional one to model a variety of outcomes (11, 25, 26).  

Although random forest and latent class MNL perform closely on the prediction accuracy, the 

former requires fewer assumptions regarding the data, and can run faster. On the other hand, 

latent class MNL provides better insights into the heterogeneity in the data, and can be of more 

help in policymaking for different regions. 

Table 5. Prediction accuracy across models. 

Model Type Prediction Accuracy 

Traditional MNL 66.9% 

Latent Class MNL 68.3% 

Random Forest 69.0% 
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Aggregate Model 

Linear Regression Model 

Although the previously discussed disaggregate models provide detailed insights into how 

households make their VO decisions, transferring their results to the aggregate level is 

theoretically not possible or requires approximations. A linear regression model, as opposed to 

the other nonlinear disaggregate model, allows the average disaggregate variables to be used in 

order to obtain the average dependent variable. In our context, therefore, we can use the average 

characteristics of a TAZ obtained from the 2018 American Community Survey and use the 

estimated linear regression model to obtain the average VO per TAZ. We, therefore, first 

estimate a linear regression model using the set of variables available both to NHTS and ACS, 

and subsequently input the average values of each GSTDM TAZ into the model and get the 

average VO per each TAZ. 

Table 6 presents the results from linear regression predicting household VO. All the model 

coefficients behave as expected, with lower income households tending to own fewer vehicles 

and larger households tending to own more vehicles. Moreover, a higher number of workers in a 

household is associated positively with a higher number of VO per household.  

With respect to the impact of the built environment, we see that, as expected, a higher housing 

density and better transit accessibility is associated with a lower number of vehicles owned per 

household. 

The model’s overall performance, with an adjusted R2 of 0.363, shows a reasonable fit. 
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Table 6. Linear regression predicting household vehicle count (N=8307). 

Explanatory Variable Estimate Std. Error t-value p-value 

(Intercept) 1.510 0.0293 51.623 <0.001 

Low HH Income (<$35k) -0.620 0.0249 -24.871 <0.001 

High HH Income (>$100k) 0.315 0.0285 11.045 <0.001 

HH Size 0.137 0.0089 15.358 <0.001 

No. of Workers per HH 0.356 0.0145 24.599 <0.001 

Housing Density -0.000591 0.0000091 -6.519 <0.001 

AllTransit Perf. Score -0.0662 0.00498 -13.303 <0.001 

Adjusted R-squared: 0.363     

 

Using the regression model as specified in table 6, we then compute the average vehicle 

ownership per each GSTDM TAZ. The computed aggregate values are included in an 

accompanying text file, and are ready to be used in other steps of the GSTDM. We further 

explore the distribution of the predicted VO at the TAZ level. Table 7 presents a descriptive 

statistic of the distribution of vehicle ownership in the state of Georgia as predicted by our 

aggregate model.  

Table 7. A comparison of predicted vehicle counts and observations from the ACS. 

Source Min. 1st Qu. Median Mean 3rd Qu. Max. 

Predicted 0.528 1.857 2.179 2.230 2.521 5.220 
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CHAPTER 4. INTRODUCING TIME OF DAY IN THE GSTDM 

Specifying the time of day (TOD) at which a trip occurs in the travel demand model allows for 

more detailed analysis and can thus lead to more effective demand management strategies. 

Rather than grouping all trips within a 24-hour period, models that incorporate TOD distinguish 

between trips that occur during peak and off-peak periods, better reflecting congestion effects 

that might prompt travelers to shift their travel mode or route (Transportation Research Board & 

National Academies of Sciences, Engineering, and Medicine, 2017). To achieve this level of 

detail, the research team conducted an extensive literature review and developed a methodology 

to implement TOD using the 2017 NHTS dataset and the latest external data sources. The 

proposed method is designed to be compatible with the latest version of the Georgia Statewide 

Travel Demand Model for practical use.  

LITERATURE REVIEW 

In order to understand how TOD can best be incorporated into the GSTDM, the research team 

reviewed the methods used in other statewide travel demand models first, then summarized and 

classified these methods. The sections below provide examples of TOD implementation in other 

statewide models, followed by a description of the different possible TOD methods and the 

stages at which they are implemented in a four-step model. Table 8, at the end of this literature 

review section, summarizes all the TOD examples and methods described here. 

TOD in Statewide Travel Demand Models 

Currently, 15 of the 34 states with operational statewide travel demand models account for TOD 

(Moeckel et al. 2019). The map in figure 8 shows these states in red, with the number of time 
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periods specified. The following sections describe in more detail the TOD methods used in a few 

of these models. 

 

Figure 8. Map. States with TDMs that account for time of day (Moeckel et al. 2019). 

Virginia Statewide Travel Demand Model 

The travel demand model for the state of Virginia, developed in 2013, uses NHTS data and 

traffic counts to calculate time-of-day factors, ultimately dividing trips into four time periods: 

AM peak (6 AM–9 AM), Midday off-peak (9 AM–3 PM), PM peak (3 PM–6 PM), and Night 

off-peak (6 PM–6 AM) (Ma and Demetsky 2013). The process for implementing time of day 

occurs in two steps. In the first step, trips are divided into either peak or off-peak periods after 

trip generation. The second step, which occurs after mode choice, further divides these trips into 
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the four time periods listed above. After traffic assignment, a feedback process is used to update 

the initial time-of-day factors. This process results in a total of 16 factors, one for each 

combination of trip purpose—home-based work (HBW), home-based other (HBO), non-home-

based (NHB), or external—with time period. 

North Carolina Statewide Travel Demand Model 

North Carolina’s statewide travel demand model implements TOD following the trip distribution 

stage. The model uses NHTS data and traffic counts to calculate time-of-day factors for short-

distance and long-distance trips, respectively, separating trips into four time periods: AM peak 

(6 AM–9 AM), Midday off-peak (9 AM–4 PM), PM peak (4 PM–7 PM), and Night off-peak 

(7 PM–6 AM). In calculating the time-of-day factors, this model is somewhat unique in its use of 

“trips in motion” (WSP/Parsons Brinckerhoff 2015). This technique divides the day into 15-minute 

intervals to count the number of trips in progress during each period. In this way, rather than 

only being counted in the period in which they start or end, trips can be counted in multiple 

periods, depending on their length.  

Other States 

There are several cases that have not adopted TOD implementation in the four-step statewide 

travel demand modeling approach. For example, Indiana removed the TOD procedures from the 

statewide model due to file size, model running time, and lack of observation data such as traffic 

counts. In the case of Florida, some MPO models are taking the TOD implementation into 

account, but the Florida statewide model is on a daily trip basis. 
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Classification of TOD Methods 

The sections below summarize the possible methods for incorporating TOD into four-step travel 

demand models. The descriptions of the methods are based mostly on a study completed for the 

Florida Department of Transportation (Pendyala, 2002).  

Method 1: Implementing TOD After the Trip-generation Stage 

In this method, TOD is implemented after the trip-generation step and before trip distribution. 

Trip generation is, therefore, conducted as in traditional daily models before trips are separated 

by trip purpose to determine which trips occur during peak periods. The last three steps, trip 

distribution, mode choice, and assignment, are then performed separately for each period 

(Pendyala 2002). Implementing time of day at this stage allows for more detailed analysis in 

these final three steps, as the trips within each time period are more homogenous than when all 

trips are considered at once. 

Method 2: Implementing TOD After the Trip-distribution Stage 

This method incorporates time of day between step two, trip distribution, and step three, mode 

choice, of the four-step model (Pendyala 2002). As in Method 1 described above, trip generation 

is conducted for the whole day. However, unlike in Method 1, trip distribution is then determined 

before dividing trips by purpose and time period. Mode choice and trip assignment are then 

performed for each period. This method also allows for more detailed mode choice analysis but 

introduces inconsistency between trip distribution and mode choice, as distribution is based on 

daily travel speeds while mode choice is based on period-specific travel speeds. 



 

41 

Method 3: Implementing TOD After the Mode-choice Stage 

In this method, the first three steps of the four-step model are performed on the day as a whole. 

After mode choice is determined, trips are separated by trip purpose and mode to define peak 

periods before performing trip assignment (Pendyala 2002). Setting the time periods at this stage 

allows for the consideration of different peak periods for different modes. However, trip 

distribution and mode choice analysis are less detailed using this method than in Method 1 or 2, 

as they do not account for time of day. 

Method 4: Implementing TOD After the Trip-assignment Stage 

Finally, this method accounts for time of day at the end of the four-step model. In this case, all 

four steps are performed for the entire day, and the outputs of the trip-assignment stage are 

analyzed to determine peak periods (Pendyala 2002). As a result, trip assignment does not reflect 

the variations in speed and volume that occur throughout a day. However, this method is the 

easiest to implement. This is the method currently employed by the GSTDM. 
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Table 8. Summary of TOD implementation in statewide travel demand models. 

State Model Type Base Year Data 
TOD Classification 

(Time Periods) 
TOD Implementation Stage 

Georgia Four-step 

model 

2015 NHTS 2009 

traffic counts 

4 time periods: 

• AM peak (6–10) 

• Midday (10–15) 

• PM peak (15–19) 

• Night (19–6) 

Postprocessing after trip 

assignment 

Colorado Activity-

based model 

2010 2010 Front 

Range Travel 

Counts 

Tour TOD based on 1-hour 

periods 

N/A 

North 

Carolina 

Four-step 

model 

2011 NHTS 2009 4 time periods:  

• AM peak 

(6 AM–9 AM) 

• Midday off-peak 

(9 AM–4 PM) 

• PM peak (4 PM–7 PM) 

• Night off-peak 

(7 PM–6 AM) 

After trip distribution 

(Method 2) 

Virginia Four-step 

model 

 NHTS 2009 4 time periods: 

• AM peak 

(6 AM–9 AM) 

• Midday off-peak 

(9 AM–3 PM) 

• PM peak (3 PM–6 PM) 

• Night off-peak 

(6 PM–6 AM) 

Two-stage process: 

• Peak/off-peak split 

after trip generation 

• Further divided into 4 

time periods after mode 

choice 
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METHODOLOGY 

Overview 

Based on the literature review and the peer review (Federal Highway Administration 2013), the 

research team specified the methodology of the TOD implementation, as discussed below.  

First, as previously mentioned, the research team followed the ground rule that the proposed 

travel demand model and its specific methodologies should be embedded in the current version 

of the GSTDM with compatible modeling methodologies. Given that the trip purpose in the 

GSTDM, which is classified into two different categories based on trip distance, TOD factors in 

this research are also separately determined based on trip distance: (1) TOD factors for short-

distance trips, and (2) TOD factors for long-distance trips. The same threshold of 50 miles 

between short- and long-distance trips that was introduced in the Georgia statewide model is 

applied to this research. 

Second, the concept of “trips-in-motion” is adopted to specify time-of-day periods. This method 

counts the total number of trips for each time bin (e.g., 15 minutes). Importantly, it allows 

individual trips to be counted multiple times when it occupies multiple time bins, while the 

traditional counting method considers either start or end time of each trip (that is, each trip must 

belong to only one time bin based on trip start or end time). 

Third, a specific weight indicator proposed by the 2017 NHTS is utilized. The 2017 NHTS 

includes four weights: household weights, person-level weights, travel-day-level weights, and 

vehicle weights. The research team only used person-level weights, which are designed to 

represent all persons in the study area. 
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Fourth, the TOD implementation is designed to be conducted after the trip-generation step. Since 

the current GSTDM method of the TOD implementation is postprocessing after trip assignment 

(simply dividing daily trips into four time-specific trips), TOD-specific trips cannot be accurately 

calculated. Instead, the proposed approach can determine trips by TOD more accurately after 

taking peak time traffic congestion into account. 

Benchmark Time for TOD 

The research team reviewed which time is the best to determine the time-of-day periods (referred 

to as benchmark time in this research). Traditionally, start time or end time of each trip are 

considered to define the cut-off of the peak time periods. In this research, however, a newly 

defined indicator, trips in motion, is adopted. It was introduced in a statewide travel demand 

model in the North Carolina Department of Transportation (NCDOT) to better account for trips 

that take place across more than one time period by counting the number of trips in progress 

during each 15-minute interval. Counting trips in motion, rather than simply trip start or end 

times, ultimately produces a more accurate estimate of the proportion of trips that occur in each 

time period. Figure 9 provides an example of how the trips-in-motion approach would differ 

from a traditional approach in classifying a trip that spans multiple 15-minute time intervals. The 

entire process of applying the trips-in-motion approach to counting trips is written in an 

accompanying R script. 

There is one thing to keep in mind when using this method. The trips-in-motion approach is 

beneficial to accounting for traffic congestion situations, but it is not appropriate for vehicle 

miles traveled (VMT) or traffic counts itself, as that method can overcount the true numbers 

(e.g., a single trip can be counted multiple times via trips-in-motion). 



 

45 

 

Figure 9. Diagram. Comparison of trips-in-motion approach 

to traditional time period classification. 

Trip Purpose 

Basically, the research team classified the passenger trip purposes into three: home-based work 

(HBW), home-based other (HBO), and non-home-based (NHB). In the NHTS classification, 

home-based trip purposes include home-based work (HBW), shopping (HBSHOP), social and 

recreation (HBSOCREC), and other (HBO), but the latter three purposes were combined into 
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HBO in this study because reconciled NHTS in Georgia does not have sufficient cases of those 

three purposes, and there is no significant behavioral difference among them (i.e., they are 

mostly related to home-based leisure/social trips, being treated as one purpose). Therefore, the 

TOD factors are determined for three purposes. 

RESULTS 

Number of TOD Periods 

Determining the number of TOD periods in the GSTDM is a starting point of task 2. The number 

of time periods generally ranges between two (simply peak and off-peak) and five (early 

morning, AM peak, midday, PM peak, and overnight). Although accuracy increases with the 

number of time periods used, data needs and computation times do, as well. The decision of how 

many time periods to include should therefore account for both the level of detail and accuracy 

needed in the analysis and the data available. 

The research team goes through the temporal trip distribution by purpose based on the “trips in 

motion” approach. Figure 10 shows the resulting temporal trip distribution using this trips-in-

motion approach. The figure appears to indicate two dominant time periods where trips occurred, 

i.e., in the morning and evening. To this end, as a result, the TOD periods in the GSTDM are 

classified into four time periods as follows: 

AM peak: 6 AM–10 AM 

Midday: 10 AM–3 PM 

PM peak: 3 PM–7 PM  

Night: 7 PM–6 AM 
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Figure 10. Stacked histogram. Temporal distribution of trips by purpose 

based on “trips in motion” approach, short-distance trips. 

 

Figure 11. Stacked histogram. Temporal distribution of trips by purpose 

based on a regular approach, short-distance trips. 
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Figure 12. Stacked histogram. Temporal distribution of trips by purpose 

based on “trips in motion” approach, all trips. 

 

Figure 13. Stacked histogram. Temporal distribution of trips by purpose 

based on a regular approach, all trips. 
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Two transportation agencies in Georgia, the Georgia Department of Transportation and the 

Atlanta Regional Commission (ARC), are currently using the same peak time period: 6 AM–

10 AM for the AM peak period, and 3 PM–7 PM for the PM peak period. This consistency will 

allow both agencies to utilize the proposed TOD factors as a reference in travel demand models. 

Short-distance Trips 

As mentioned previously, TOD factors for short- and long-distance trips are separately 

determined using the 2017 NHTS dataset. The profile of short-distance trips, without accounting 

for the trips-in-motion approach, is presented as follows. HBO trips account for more than half 

of total trips (54.3 percent, 30,902 trips), followed by NHB (32.3 percent, 19,695 trips) and 

HBW (13.4 percent, 7,622 trips). 

 

Figure 14. Pie graph. Shares of total short-distance trips by purpose. 
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Breaking down the shares of total short-distance trips by purpose and mode choice indicates a 

largely consistent finding where most trips were made by auto. That is, as shown in figure 15, 

auto is the dominant mode choice, exceeding 80 percent from the total share for each trip 

purpose category. This observation is particularly relevant for the HBW trips where there were 

7,288 auto trips (93.4 percent) out of 7,604 HBW trips. Trips classified as HBO had the lowest 

share of auto trips at 83.5 percent, or 26,618 out of 30,841 HBO trips. Moreover, there were 

17,834 auto trips (88.8 percent) out of 19,587 NHB trips. 

 

Figure 15. Bar graphs. Shares of total short-distance trips by mode and purpose. 
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Figure 16. Pie graph. Shares of total short-distance trips 

by time period (all purposes). 

Trip shares by time period following the trips-in-motion approach are shown in table 9. First, 

there are two pronounced peaks for HBW. AM and PM peaks account for 38.7 and 34.8 percent 

respectively (73.5 percent of daily trips), whereas off-peak trips account only for 26.5 percent, 

which is a plausible distribution of commuting trips. The pattern of HBO trips is considerably 

different from that of HBW; its PM peak and Night are fairly similar (32.7 and 16.0 percent) to 

those of HBW, but the portion of AM peak for HBO is markedly lower than that for HBW. 

Accordingly, the share of Midday for HBO is significantly higher than that for HBW. This is 

because characteristics of various types of home-based trip purposes other than HBW, including 

social, recreation, and shopping trips that mostly occur in the daytime, are all mixed up. For 

example, people usually leave their home late morning or around noon (i.e., after the AM peak) 

to meet people (social) or to visit some places (social, recreation, or shopping). With respect to 

NHB, the overall pattern is similar to the HBO distribution. A majority of trips are concentrated 

in Midday (39.9 percent), followed by PM peak (34.1 percent), while AM peak and Night 
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account only for 18.0 and 7.9 percent, respectively. Since most NHB trips are treated as a part of 

a trip chain and not a major component in a tour trip, it is likely to rely on home-based trips and 

supposed to replicate characteristics of home-based trips. Although the AM peak of HBW 

accounts for 38 percent of total HBW trips, it does not significantly affect NHB distribution 

because HBW constitutes a relatively small portion (17 percent) of total trips, meaning that NHB 

trips are heavily affected by characteristics of HBO trips. 

Table 9. Trip shares by time period and purpose (short-distance trips). 

 
AM Peak 

(%) 

Midday 

(%) 

PM Peak 

(%) 

Night 

(%) 

HBO 40.9 52.0 58.6 25.9 

HBW 91.2 22.9 79.4 30.4 

NHB 29.7 75.3 58.2 11.9 

Note: The sum of shares by purpose exceeds 100 percent because the denominator is the total number of 

trips while the numerator is the sum of multiple-counted trips based on trips-in-motion. 

 

Spatial Distribution of Trips by Time Period 

Basically, the amounts of production and attraction trips depend highly on time of day, and their 

pattern is significantly opposite from each other. For example, most HBW trips are generated 

during the peak period, but directionality of those trips during the AM peak is mostly “from 

home to workplace” (referred to as PA in this report). Likewise, most trips during the PM peak 

are “from workplace to home (AP). It means that a different set of TOD factors needs to be 

applied to the total number of PA and AP trips by TAZ after the trip-generation stage to convert 

daily total trips to period-specific trips. In order to examine directionality, the research team 

further conducted a series of data visualization exercises to observe the spatial distribution of the 

home-based trips by mapping the number of trips whose trip origin is home (PA) or trip 

destination is home (AP) at the census tract level by trip purpose and peak time period (for 
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example, refer to figure 13). Figure 17 illustrates shares of short-distance home-based trips by 

purpose and TOD, which is further divided into PA and AP. It shows that 71 percent of HBW 

PA trips are generated during the AM peak, while 67 percent of HBW AP trips are concentrated 

in the PM peak. Regarding NHB trips, it does not have directionality between production and 

attraction, and there is no clear home-based source producing or attracting trips (all NHB trips 

just have origin and destination). Therefore, TOD factors for NHB trips are not divided into PA 

and AP, but simple TOD factors specified into four time periods (refer to table 4) are applied to 

TOD implementation. Detailed interpretation and implications of map visualization are described 

by purpose as follows. 

 

Figure 17. Bar graph. Share of short-distance trips by trip purpose and directionality. 

Home-based work (HBW): Figure 18 and figure 19 shows the spatial distribution of the generated 

HBW trips at the census tract level during the AM and PM peaks, respectively; the darker the 

TAZs are, the more the trips are generated. The figure on the left side illustrates the number of 
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trips whose origin is home (i.e., PA trip), aggregated by origin TAZ, and the other one presents 

the number of trips whose destination is home (i.e., AP trip), aggregated by destination TAZ.  

By and large, all four maps demonstrate typical patterns. On one hand, there are substantially 

more trips originated from home to work (PA trips) than generated trips from work to home (AP 

trips) during the AM peak period; on the other hand, there are significantly more trips originated 

from work to home during the PM peak period. It means that a larger portion of HBW trips 

should be allocated for PA trips at AM peak and for AP trips at PM peak. 
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Figure 18. Maps. Spatial distribution of generated HBW short-distance trips 

at the census tract TAZ level during the AM peak period. 
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Figure 19. Maps. Spatial distribution of generated HBW short-distance trips 

at the census tract TAZ level during the PM peak period. 
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Table 10 corroborates those findings. It shows that a more substantial number of trips are 

originating from home to work during the AM peak (2,898 trips) than during the PM peak 

(239 trips) and more trips returning home during the PM peak (2,276) than the AM peak (116).  

Table 10. Number of generated HBW trips by directionality, short-distance trips. 

 AM Peak Midday PM Peak Night 

HBW-PA 2,898 473 239 496 

HBW-AP 116 444 2,276 564 

PA (Origin: Home); AP (Destination: Home) 

Home-based other (HBO): Based on the same analytical process for the HBW trips as presented 

above, the research team also investigates the spatial distribution of the generated HBO trips at 

the census tract level during the AM and PM peaks. As presented in figure 20 and figure 21, 

overall directionality of HBO trips between PA and AP shows extremely opposite patterns in 

both peak time periods. Following the expectation, most HBO trips originating from home, 

which include trips such as dropping children off to school, shopping, and recreation, tend to 

occur during the AM peak rather than PM peak. Similarly, and again following the expectation, 

the analysis also presents that there are substantially more HBO trips heading toward home 

during the PM peak in comparison to the AM peak period.  
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Figure 20. Maps. Spatial distribution of generated HBO short-distance trips 

at the census tract TAZ level during the AM peak period.  
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Figure 21. Maps. Spatial distribution of generated HBO short-distance trips 

at the census tract TAZ level during the PM peak period.  
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Table 11 further substantiates the characteristics of period-specific HBO trips. It shows the 

observed number of HBO trips originating from or heading to home during the different time 

period throughout the day. Considerably more trips originate from home during the AM peak 

(5,724 trips) than during the PM peak (3,507 trips) and more trips return home during the PM 

peak (6,247) than the AM peak (1,549). Interestingly, a sizable portion of HBO AP trips occurs 

during Midday (4,856); this makes sense given that shopping or leisure trips can occur between 

two peak time periods. 

Table 11. Number of generated HBO trips by directionality, short-distance trips. 

 AM Peak Midday PM Peak Night 

HBO-PA 5,724 3,910 3,507 833 

HBO-AP 1,549 4,856 6,247 3,149 

PA (Origin: Home); AP (Destination: Home) 

Non-home Based (NHB) 

As mentioned previously, unlike the HBW and HBO trips which have directionality, NHB trips 

traditionally do not consider directionality in determining TOD factors. Neither production nor 

attraction are a base spot generating trips, so it is impossible to define directionality in the 

context of a trip-based model. Given that reason, the research team does not take directionality 

into account (i.e., not dividing trips into PA and AP) in determining TOD factors for NHB trips. 

Thus, the simple share of NHB trips by TOD period is presented in table 12. 

Table 12. Number of generated NHB trips, short-distance trips. 

 AM Peak Midday PM Peak Night 

NHB 3,634 9,372 6,418 1,514 
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Final TOD Factors 

Before determining final TOD factors, the research team first scales individual trips up using the 

person-level weights (“WTPERFIN” variable) provided by NHTS data. Based on the basic TOD 

factors stratified by four time periods as presented above, the specified TOD factors for 

production to attraction (PA) and attraction to production (AP) are calculated after considering 

the directionality, as shown in figure 22 and table 13.  

Not surprisingly, HBW shows the opposite distribution of trips between PA and AP. The PA and 

AP trips for the AM peak constitute 66.8 and 3.8 percent of daily trips, respectively, while those 

for the PM peak account for 6.9 and 61.7 percent, respectively. On the other hand, the overall 

distribution of HBO is quite different. There is a clear large portion of trips at AM peak for PA 

(41.6 percent) and at PM peak for AP (40.1 percent), but midday trips also account for almost 

30 percent of daily trips, which is consistent with the result above. Regarding NHB, final TOD 

factors for AP are not presented in table 13 because of a lack of an anchor station and 

directionality. In order to calculate period-specific traffic volumes for NHB AP trips, the TOD 

factors for NHB PA can be applied. That is, TOD factors for NHB AP are 17.8, 42.9, 31.2, and 

8.1 for AM peak, Midday, PM peak, and Night, respectively. 
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Figure 22. Bar graph. TOD factors, short-distance trips (weighted). 
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Table 13. TOD factors, short-distance trips (weighted). 

 Volume Distribution 

PA AP PA AP 

HBW     

AM Peak 1,391,472 68,058 66.82 3.80 

Midday 263,863 228,745 12.67 12.78 

PM Peak 145,226 1,104,743 6.97 61.73 

Night 281,923 388,068 13.54 21.68 

Sum 2,082,484 1,789,614 100 100 

HBO     

AM Peak 3,039,749 771,153 41.61 9.44 

Midday 1,980,590 2,378,571 27.11 29.12 

PM Peak 1,743,121 3,275,450 23.86 40.10 

Night 541,466 1,743,938 7.41 21.35 

Sum 7,304,926 8,169,112 100 100 

NHB     

AM Peak 1,823,084 -a 17.80 - a 

Midday 4,395,230 - 42.92 - 

PM Peak 3,193,822 - 31.19 - 

Night 827,232 - 8.08 - 

Sum 10,239,368 - 100 - 
a Final traffic volumes and corresponding TOD factors for NHB AP trips are not presented due to the lack of 

directionality, but TOD factors for NHB PA can be applied to the same category of NHB AP. 

Long-distance Trips 

Following the process to compute TOD factors for short-distance trips, the same process with the 

trips-in-motion approach was conducted to determine TOD factors for long-distance trips that 

extended more than 50 miles.5 Figure 23 presents the results of applying the trips-in-motion 

approach on long-distance trips to showcase the distribution of trips that occupies the roads on a 

 

5 The analysis excludes air travels and trips that occurred entirely out of Georgia boundaries. This led to a fewer 

number of trips used in the analysis (n=1,130) from the initial observations (n=1,338).  
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15-minute time bin. There are two prominent peaks of long-distance trips throughout the 24-hour 

timeframe at morning and evening peaks, which is similar to the observations from short-

distance trips. Also, the distribution of trips based on a regular approach (figure 24) demonstrates 

the traditional pattern with two peaks during peak time periods. What differentiates the 

observation of the temporal distribution between the short- and long-distance trips in terms of the 

trips-in-motion approach is the notion that the “valley” between the two peaks in the long-

distance trips (figure 23) seems to be less steep in comparison to the one observed in the short-

distance trips (figure 10). This is an expected discrepancy since long-distance trips cover longer 

distances and durations than the short-distance trips and thereby would likely cover more 15-

minute time bins, which spread farther than short trips and in turn yield the less pronounced 

“valley” between the two peak time periods. 

 

Figure 23. Stacked histogram. Temporal distribution of trips by purpose 

based on “trips in motion” approach, long-distance trips. 
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Figure 24. Stacked histogram. Temporal distribution of trips by purpose 

based on a regular approach, long-distance trips. 

There is no significant difference in the purpose share between short- and long-distance trips, as 

illustrated in figure 25. HBO trips account for almost half of total trips (48.1 percent), followed 

by NHB (37.2 percent), and HBW (14.7 percent). 
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Figure 25. Pie graph. Share of total long-distance trips by purpose. 

Breaking down the shares of total long-distance trips by purpose and mode demonstrates that a 

vast majority of travelers choose a travel mode of auto across purposes (figure 26). Specifically, 

98 percent of trips for HBO and HBW are auto, and the share of auto trips for NHB constitutes 

78.3 percent of total NHB trips. On the other hand, shares of other modes, including airplane, 

bicycle, transit, and walk, appear almost negligible; their portions are mostly lower than 

2 percent, except for NHB whose shares of airplane and public transit are 15.8 and 5.7 percent, 

respectively. 
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Figure 26. Bar charts. Share of total long-distance trips by mode and purpose. 

Trip shares by time period based on the trips-in-motion approach are presented in table 14. For 

instance, in comparison to the shares for short-distance trips (table 9), the difference between 

AM peak and Midday appears to be less dramatic. While the shares of HBW trips during the AM 

peak and Midday in the short-distance trips are 38.71 and 10.7 percent, respectively, those in the 

long-distance trips are 34.08 and 18.45 percent, respectively. Another finding that characterizes 

the long-distance trips is the greater share of trips occurring during the Night period than the 

ones observed in the short-distance trips. This is particularly apparent for the NHB trips where 

there were 14.36 percent in the long-distance trips in contrast to the 7.93 percent as observed in 

the short-distance trips.  
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Table 14. Trip shares by time period and purpose (long-distance trips). 

 
AM Peak 

(%) 

Midday 

(%) 

PM Peak 

(%) 

Night 

(%) 

HBO 190.6 351.3 305.2 180.2 

HBW 257.2 100.5 246.2 149.5 

NHB 183.9 423.8 302.6 141.3 

 

Spatial Distribution of Trips by Time Period 

As described above, the amounts of production and attraction trips which take directionality into 

account depend heavily on time of day, and their pattern is significantly opposite from each other 

(figure 27). Not surprisingly, most HBW trips occur during the two peak time periods, but the 

pattern between PA and AP is reversed, as expected. Of trips from home to workplace, 

65.4 percent are generated during the AM peak, whereas only 0.7 percent of trips from home to 

workplace are generated during the PM peak. Likewise, the share of HBW AP trips (from 

workplace to home) at the PM peak accounts for 60.2 percent, while the share of HBW AP trips 

at the AM peak constitutes only 4.7 percent.  

Note that PA and AP classifications for NHB are not presented here, as NHB trips do not have 

directionality (i.e., there is no anchor station for NHB trips, so neither production nor attraction 

point can be defined). 
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Figure 27. Bar charts. Share of total long-distance trips by directionality. 

Final TOD Factors 

As the research team did for finalizing the short-distance TOD factor, individual long-distance 

trips are weighted based on the person-level weights (“WTPERFIN”), which is provided by the 

original NHTS dataset. Summing all trips by TOD and purpose, the research team calculate the 

final TOD factors after considering directionality, as presented in figure 28 and table 15. The 

final factors (the right two columns in table 15) can be used in the traditional four-step travel 

demand model. In particular, purpose- and period-specific number of trips can be obtained using 

the factors after the trip-generation step in the modeling process, along with a proposed TOD 

implementation method (refer to the TOD Implementation After Trip Generation subsection 

below). 
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Figure 28. Bar chart. TOD factors, long-distance trips (weighted). 
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Table 15. TOD factors, long-distance trips (weighted). 

 Volume Distribution 

PA AP PA AP 

HBW     

AM Peak 31,183 2,366 57.56 4.76 

Midday 2,265 6,291 4.18 12.66 

PM Peak 339 34,508 0.62 69.46 

Night 20,392 6,515 37.64 13.11 

Sum 54,179 49,680 100 100 

HBO     

AM Peak 62,231 13,626 56.15 9.97 

Midday 33,908 43,824 30.11 32.06 

PM Peak 11,010 47,004 9.78 34.39 

Night 4,453 32,228 3.95 23.58 

Sum 111,602 136,682 100 100 

NHB     

AM Peak 74,369 - 31.00 -a 

Midday 76,676 - 31.96 - 

PM Peak 60,139 - 25.07 - 

Night 28,718 - 11.97 - 

Sum 239,902 - 100 - 
a The final traffic volumes and corresponding TOD factors for NHB AP trips are not presented due to the lack of 

directionality, but TOD factors for NHB PA can be applied to the same category of NHB AP. 

Through Trips (External to External Trips) 

A through trip refers to interregional travel for which both trip ends are located out of Georgia. 

Since the dataset used in this research only includes trips within Georgia or partly in Georgia 

(referred to as internal trips for which either trip end or both ends is located in Georgia or both), 

TOD factors for external trips must be defined using external data sources. The research team 

amassed data collecting traffic counts; as a result, the source from the Traffic Analysis & Data 

Application (TADA), which provides data collected from the Georgia Traffic Monitoring 
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Program, located on public roads is selected. To determine representative TOD factors for 

external trips, traffic counts need to be aggregated. There are several ways to sum up the external 

trips counted by loop detectors, and the research team reviewed two different approaches: 

(1) using the most representative month and date with the least variation, and (2) annual average 

traffic counts.  

Regarding the first approach, two traffic adjustment factors, monthly and daily factors, are used 

to investigate what month and date show the least variation (i.e., representative), thereby 

choosing the most representative day to collect traffic count data given that day. GDOT (2018) 

calculated both factors by dividing the annual average daily traffic (AADT) by the daily (or 

monthly) average traffic, meaning how much traffic volume for each day (or month) need to be 

adjusted to determine the AADT. The result shows that Monday, April, and September 

demonstrate the least fluctuation (refer to table 16 and table 17).  

Based on the result above, specific traffic counts by TOD could be obtained by choosing the 

most representative specific date or computing the average of every applicable date. However, it 

might raise a question about reliability of this method because there is no clear guideline 

specifying the best method to aggregate traffic counts by TOD (i.e., it depends highly on the 

analysts’ decision and judgment). Thus, the research team has chosen the second approach. 

Hourly average traffic counts from the Georgia state border collected from January 1 to 

December 31, 2017, are used to determine the final TOD factors for through trips. 
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Table 16. 2016 daily factors by road hierarchy in Georgia. 

Road 

Typea 
Sunday Monday Tuesday Wednesday Thursday Friday Saturday 

1 1.22 1.01 0.98 0.98 0.94 0.89 1.04 

2 1.22 1.01 0.99 0.98 0.94 0.88 1.05 

3 0.92 1.08 1.15 1.10 1.01 0.82 0.97 

4 1.37 0.97 0.92 0.92 0.91 0.90 1.17 

5 1.26 1.00 0.99 0.98 0.94 0.87 1.04 

6 1.16 1.02 1.01 0.99 0.95 0.88 1.04 

7 1.43 0.98 0.93 0.92 0.92 0.88 1.13 

8 1.36 0.99 0.94 0.93 0.92 0.90 1.10 

9 1.19 1.01 0.98 0.97 0.95 0.91 1.04 

Mean 1.24 1.01 0.99 0.97 0.94 0.88 1.06 

SD 0.15 0.03 0.07 0.05 0.03 0.03 0.06 

Note: The highlighted row shows the least variation of traffic counts. 
a 1=collectors and locals in rural, 2=arterials in rural, 3=interstates in rural, 4=collectors in urban, 5=arterials in urban, 

6=interstate in urban, 7=arterials in urban, 8=arterials in Atlanta, 9=interstates in Atlanta. 

Table 17. 2016 monthly factors by road hierarchy in Georgia. 

Road 

Type 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 1.10 1.09 0.99 0.99 0.96 0.98 0.97 0.96 0.97 0.90 1.07 1.07 

2 1.11 1.03 0.99 0.98 0.97 0.98 0.99 1.00 0.99 0.92 1.01 1.05 

3 1.17 1.12 0.97 0.98 0.96 0.92 0.88 1.02 1.03 0.99 1.00 1.04 

4 1.08 1.01 0.96 0.97 0.96 1.00 1.02 0.95 0.98 0.98 1.06 1.06 

5 1.10 1.01 0.98 0.98 0.96 0.98 0.99 0.97 1.00 0.96 1.04 1.05 

6 1.10 1.04 0.96 0.97 0.97 0.96 0.94 1.00 1.02 1.01 1.03 1.03 

7 1.07 0.98 0.96 0.96 0.97 1.00 1.01 0.98 1.00 1.00 1.04 1.05 

8 1.07 1.00 0.97 0.98 0.97 0.99 1.02 0.97 0.98 0.96 1.05 1.06 

9 1.07 1.02 0.98 0.98 0.97 0.97 0.99 0.99 1.00 0.99 1.04 1.03 

Mean 1.10 1.03 0.97 0.98 0.97 0.98 0.98 0.98 1.00 0.97 1.04 1.05 

SD 0.03 0.04 0.01 0.01 0.01 0.02 0.04 0.02 0.02 0.04 0.02 0.01 

Note: The highlighted row shows the least variation of traffic counts. 

a 1=collectors and locals in rural, 2=arterials in rural, 3=interstates in rural, 4=collectors in urban, 5=arterials in 

urban, 6=interstate in urban, 7=arterials in urban, 8=arterials in Atlanta, 9=interstates in Atlanta. 
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In order to count trips traveling across Georgia borders, 14 traffic count stations out of 18 

stations in TADA are selected, as presented in table 18 and figure 29. Those stations are located 

on main arterials or interregional freeways. Traffic counts are summed up by hour across 14 

stations (figure 30), then the share of each TOD is calculated, as presented in table 19. 

Table 18. List of traffic count stations for external trips.  

# ID Roadway type Description 

1 083-0194 Inter (rural) I-59/SR406 bn Pudding Rdg Rd & SR136 MP 8 

2 083-0209 Inter (rural) I-24/SR409 bn TN SL & I-59, Trenton, Dade Co 

3 083-0214 Inter (urban) I-24 bn TN State Line & SR299 W Side, Chattanooga 

4 047-0114 Inter (urban) I-75 btwn SR146 & Tennessee line 

5 147-0287 Inter (rural) I-85 btwn Hart/Franklin Co. Line & SR77 Whitworth Rd 

6 245-0218 Inter (urban) I-20 E of I-520 @SC state line, Augusta 

7 245-0233 Inter (urban) I-520 S of SC state line & SR28 nr Foster Ln, Augusta 

8 051-0387 Inter (urban) I-95, 2 mi N of SR-21 (Augusta Rd) @ SC state line 

9 039-0218 Inter (urban) I-95: bn FL SL & St Marys Rd, Kingsland, GA 

10 065-0125 Arterial (rural) US-441/SR89/Barton St S of SR94, Fargo, Clinch Co 

11 185-0227 Inter (rural) I-75/SR401 @FLA SL, Lake Park, Lowndes Co 

12 087-0103 Arterial (rural) US-27/SR1 S of US-27BU/SR1BU/E Griffin Ave 

13 145-0234 Inter (urban) I-85/SR403 1 mi E of AL state line, West Point 

14 143-0126 Inter (rural) I-20 btwn Alabama state line & SR100 Veterans Mem Hwy 
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Figure 29. Map. Location of traffic count stations in Georgia. 

 

Figure 30. Screenshot. Data format of hourly averages report 

from Georgia state border in 2017. 
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Table 19. Final TOD factors for through trips. 

TOD AM Midday PM Night 

TOD Factors 18.6 30.6 26.3 24.5 

Note: The trips-in-motion approach is not applied to through trips as each trip in traffic counting data was counted 

only one time when it passed detectors.  

TOD Implementation After Trip Generation 

In the current GSTDM, TOD implementation is conducted after the trip-assignment step, through 

appropriate postprocessing, to calculate AM and PM peak period trips (figure 31). That is, the 

current approach simply divides the GSTDM daily trip outputs, which are obtained after trip 

assignment, into period-specific traffic volumes. The process includes: (1) creating the AM and 

the PM peak trips from the daily trip tables using the TOD factors, (2) updating the network with 

peak-period capacities, and (3) performing trip assignment for two peak periods.  

 

Figure 31. Flowchart. TOD implementation in the current GSTDM. 

One limitation of this approach is that TOD factors cannot be applied in the intermediate steps of 

the analysis, such as after the trip-generation or distribution steps. A problem of the 
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postprocessor results in that it cannot account for peak time congestion in the process of travel 

demand estimation since travel time and cost variables (summarized in the skim matrices) are 

defined based on the 24-hour travel patterns, meaning that there is a discrepancy between the 

four-step process and the postprocessing.  

Therefore, the research team proposed a method allowing modelers to specify traffic congestion 

conditional on each peak time period in the trip-distribution, mode-choice, and trip-assignment 

steps by applying the TOD implementation right after the trip-generation step to predict more 

accurate peak-period traffic volumes (figure 32). The key improvement of this approach is to 

calculate TOD-specific travel time and cost accounting for traffic congestion on roadways. 

Consequently, TOD-specific trip-distribution and mode-choice analyses can be carried out using 

travel time and cost variables by TOD. Of course, it requires extensive time and effort to 

compute TOD-specific mode attributes, trip tables, and statistical modes. Thus, it has to be 

discussed with modelers, practitioners, and decision-makers to meet their requirement.  

 

Figure 32. Flowchart. Proposed method of the TOD implementation in GSTDM. 
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CHAPTER 5. EVALUATING THE INCLUSION OF 

A DESTINATION CHOICE MODEL 

The trip-distribution step in the four-step travel demand modeling framework has shown to be 

the largest source of error in travel demand modeling (Zhao and Kockelman 2002), therefore 

mandating further improvements in the accuracy of this step in the GSTDM. Although the 

gravity model, largely due to its simplicity and theory-based application, has been the prevailing 

method of distributing trips in most regional models, it tends to underperform compared to other 

newer methods of trip distribution. Among these other trip-distribution methods, specifically, 

destination choice models have gained more traction in regional models and have shown to 

improve trip-distribution accuracy (Mishra et al. 2013). The goal of this task, therefore, is to 

investigate and evaluate the application of a destination choice model in the GSTDM, and 

provide guidance on the implementation of this model in the overall statewide modeling 

framework. 

GDOT Report 18-24 (Kash, Mokhtarian, and Circella 2021) provides a basic exploration of trip 

patterns by location of travel in Georgia, such as trip frequencies between MPO tiers and vehicle 

miles traveled of trips in Georgia. Readers are encouraged to refer to GDOT Report 18-24 for 

further initial exploration of the 2017 NHTS data. 

CURRENT STATUS OF TRIP DISTRIBUTION IN THE GSTDM 

The GSTDM currently uses the gravity model structure to distribute trips. The output of the trip-

generation step is segmented by trip purpose (HBW, HBO, and NHB), and a separate gravity 

model is estimated for each segment. The current version of the GSTDM does not consider time-

of-day in its trip distribution step. 
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REVIEW OF OTHER STATEWIDE MODELS 

A recent survey of statewide models in the U.S. shows that the gravity model continues to be the 

dominant method of trip distribution (Moeckel, Donnelly, and Ji 2019), with destination choice 

models the second-most popular method. As figure 33 shows, 22 states use the gravity model 

structure, while 11 use the destination choice model. These 11 states include Arizona, California, 

Idaho, Iowa, Maryland, New Hampshire, Ohio, Oregon, Tennessee, Wisconsin, and Florida. Of 

the 11 states that use (logit-based) destination choice models, 8 only use it for short-distance trips 

and use the gravity model for long-distance trips. Such a combination generally ensures the 

largest model sensitivities for the trip-distribution step (Moeckel, Donnelly, and Ji 2019). In line 

with such conclusions, we recommend that GDOT keeps its long-distance gravity model, and 

consider using a destination choice model for the short-distance trips. 

 

Figure 33. Bar graph. Distribution of the U.S. statewide travel demand models 

based on their trip distribution model. 
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DATA PREPARATION 

Similar to the other tasks in this project, the researchers used the 2017 NHTS as the main data 

source for the estimation and evaluation of the destination choice model. We used the 2017 

NHTS trip file for the state of Georgia, and used the geocoded origin and destination of the trips 

to associate them with the TAZ structure used in the GSTDM. 

The next step, and arguably the most important step in the data preparation for destination choice 

models, involved defining the destination choice set. Although it might be feasible to include all 

available destination TAZs in the destination choice for trips (especially in smaller models), it 

becomes increasingly difficult in larger statewide models. Statewide models often include 

thousands of TAZs, and considering all of them as possible destinations can both run counter to 

intuition (since an individual making a trip cannot possibly consider thousands of options to 

make a decision) and be intractable in terms of data preparation and estimation. We, therefore, 

devised a scheme to limit the destination choice set of the trips to a more manageable number. 

Choice Set Formation  

In order to limit the size of destination choice sets in our model, we took two steps. First, for 

each origin TAZ, since we were dealing with short-distance trips, we only included destination 

TAZs within its 50-mile radius. Afterward, we used a probability sampling process to sample a 

limited number of destinations for each origin. Previous studies in the literature use varying 

destination choice set sizes, with set sizes ranging from 0.7 to 14.5 percent of all the available 

alternatives (Kim and Lee 2017). In this study, we test different choice set sizes (i.e., 10, 20, and 

30) and evaluate their impact on the model specification and fit. 
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The two common probability sampling processes used in destination choice studies include 

simple random sampling and importance sampling. In random sampling, each alternative (or in 

our context, a TAZ), has an equal probability of entering the choice set. In importance sampling, 

however, we assign a weight (or importance) to each alternative based on its attraction level, and 

carry out a weighted sampling based on the calculated weights (Ben-Akiva and Lerman 1985). In 

this task, we use the importance sampling scheme to form the destination choice set, since 

previous studies point out that this sampling method is superior to the simple random sampling 

in destination choice studies (Bowman and Ben-Akiva 2001). 

Importance Sampling 

Conceptually, importance sampling operates on the assumption that not all alternatives are 

created equally. In other words, for a given origin, and as an example, destinations that are closer 

or are more attractive (more densely populated or more employment opportunities) should have a 

higher probability of entering the choice set than others. We, therefore, define an importance 

function to assign a weight to each destination based on the origin TAZ. For an origin zone 𝑖, we 

define the weight of destination 𝑗 using the following function: 

𝑤𝑖𝑗 = 𝑎𝑗 × exp (
−2𝑑𝑖𝑗

𝑑
) 

(5) 

In the above formula, 𝑤𝑖𝑗 denotes the weight of destination 𝑗 with respect to origin 𝑖, and 𝑎𝑗 is 

the attraction level of destination 𝑗 and is defined as the summation of its population and 

employment opportunity counts. 𝑑𝑖𝑗 is the distance between the origin and destination zones, 

and 𝑑 is the average distance between the TAZs in the region.  
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Based on the calculated weights, we assign an importance probability to each destination TAZ of 

an origin using equation (6): 

𝑝𝑖𝑗 =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑗
 

(6) 

In the above equation, 𝑝𝑖𝑗 denotes the importance probability of destination 𝑗 with respect to 

origin 𝑖. Given the calculated importance probabilities, we carry out a weighted random 

sampling (Efraimidis and Spirakis 2008) of all the available alternatives for an origin. Literature 

shows that this sampling can be done both with or without replacement (Kim and Lee 2017). 

Although sampling without replacement tends to be the default sampling method, it can result in 

dependent alternatives. Studies, however, show that these two methods provide similar results 

when the population is large and the number of sampled alternatives is less than 5 percent of the 

total population. Considering that the number of available alternatives for a TAZ tends to be 

around 1000 in our model, and we are sampling less than 50 alternatives, both methods should 

provide similar results. We, nevertheless, carry out the weighted sampling with replacement for 

this study.  

When carrying out a weighted sampling scheme for a discrete choice model, a correction term 

must be added to the utility function to ensure that the model yields unbiased estimates. We 

discuss this correction more in detail in the Method section. 

Dataset Augmentation 

The next step in the data preparation process involved adding the travel impedance variable 

associated with each trip. We used the 2015 GSTDM distance skim matrix, available in the 
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Cube® model files, and joined the distances between origin–destination (O–D) TAZs for each 

trip to our data. 

Another set of variables commonly used in destination choice models are size variables (or size 

terms), which include those such as employment size and population of a TAZ that help define 

its attraction as a destination. We used the base-year socioeconomic data used in the 2015 

GSTDM and added variables on population, household, employment (by category), and TAZ 

size to our destination choice dataset. 

Furthermore, we added some household-level characteristics, such as vehicle ownership and 

annual household income, to the dataset. These variables help capture the heterogeneity in 

destination choice among different segments of the population with differing mobility levels. We 

included these variables both at the household level and also at the aggregate (TAZ) level so as 

to make the implementation more flexible. We used the results of task 1 (see chapter 3) to add 

the aggregate vehicle ownership (average vehicle ownership per TAZ) measure and used ACS 

data to obtain aggregate income distribution per TAZ. 

Finally, we used the Census TIGER shapefiles with geographical feature data to identify TAZs 

with special features, such as parks and trails, military bases, airports, and colleges, and joined 

these features to our dataset. These indicators help better capture the trip-distribution patterns in 

the model and act as “geographical” constants in the logit-based model, especially since the 

inclusion of alternative-specific constants (as discussed below) are computationally intractable.  
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METHOD 

Destination choice models are often formulated using random utility theory, with the logit 

framework used to compute the probability by which each destination (zone) might be chosen for 

a specific trip. The probability of zone 𝑗 being selected for trip 𝑛 conditional on the choice set 𝑐𝑛 

and a set of explanatory variables 𝑥 is: 

𝑝𝑛(𝑗|𝑐𝑛, 𝑥) =
exp (𝑉𝑗𝑛 + 𝑙𝑛𝑞(𝐶𝑛|𝑗)

∑ exp (𝑉𝑗𝑛 + 𝑙𝑛𝑞(𝐶𝑛|𝑗)𝑗∈𝑐𝑛

  
(7) 

In the above equation, 𝑉𝑗𝑛 is the utility function associated with destination 𝑗 for trip 𝑛, and is 

defined as: 

𝑉𝑗𝑛 = 𝛼𝑗 + ∑ 𝛽𝑘𝑑𝑗𝑛
𝑘 + ∑ 𝛽𝑙𝑥𝑛𝑙𝑑𝑗𝑛

𝑙

+ 𝛾𝑗ln (𝑆𝑖𝑧𝑒𝑗)

𝑘

 
(8) 

𝑑𝑗𝑛
𝑘  denotes the distance polynomial term of order 𝑘 for destination j and trip n and 𝛽𝑘 is the 

associated coefficient. 𝑥𝑛𝑙 denotes the socioeconomic variables (𝑙 = 1, … , 𝐿) of the tripmaker n 

(such as income or vehicle ownership), which is interacted with the distance term, with 𝛽𝑙 

showing the associate coefficient of each interaction term. Finally, 𝑠𝑖𝑧𝑒𝑗 shows the attraction 

variable set for destination 𝑗. The reason the natural log transformation of the attraction variables 

is usually used in the model is to allow for a direct linear relationship between the size variables 

and trip distribution shares given the exponential function of the logit formulation. 

The second term in the exponential function in equation 7, i.e., 𝑙𝑛𝑞(𝐶𝑛|𝑗), is the sampling 

correction term needed to obtain unbiased estimates in the presence of nonrandom sampling of 

alternatives. This correction is calculated as follows (Frejinger, Bierlaire, and Ben-Akiva 2009): 
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𝑙𝑛𝑞(𝐶𝑛|𝑗) = − 𝑙𝑛
𝑝𝑛(𝑗)

𝑘𝑗𝑛
 

(9) 

In equation 9, 𝑝𝑛(𝑗) is the sampling probability of alternative j for trip 𝑛 (equation 6), and 𝑘𝑗𝑛 is 

the number of times alternative 𝑗 is drawn for the choice set of trip 𝑛. This probability is 

calculated before model estimation, and enters the estimation process with a fixed coefficient. In 

the Results section below, we have added the 𝑙𝑛
𝑝𝑛(𝑗)

𝑘𝑗𝑛
 term directly to the utility function and 

fixed its coefficient to −1. 

RESULTS 

In this task, we estimated separate models based on trip purpose and time of day. There are three 

trip purposes in the GSTDM framework: home-based work trips, home-based other trips, and 

non-home-based trips. For each of these trip purposes, we estimated four destination choice 

models based on the defined time-of-day trip periods. As discussed in chapter 4, the developed 

four time-of-day trip periods include the AM peak, Midday, PM peak, and Night trips. We, 

therefore, estimated a total of 12 different destination choice models. 

Home-based Work Models 

The total number of HBW trips in our dataset is 6912. As mentioned, the HBW trips are divided 

into four time-of-day segments. Table 20 shows the destination choice model for the home-based 

work trips during the morning (AM) peak period. The impedance term used in the model, as 

discussed previously, is the distance among the TAZs. This term is used in the polynomial to 

help better capture the nonlinear relationship between the destination choice and distance. Based 



 

86 

on the signs of the polynomial terms, we see a negative relationship between the choice of 

destination and its distance to the origin of a decision-maker. 

We further interacted two socioeconomic characteristics with the distance term to capture the 

impacts of important socioeconomic variables on destination choice. As the results show, 

households with lower income tend to choose closer destinations, while those with a higher 

number of vehicles are more likely to travel farther for their work.  

Furthermore, we see that TAZs with a lower population density are more likely to be among the 

destination choices in the morning peak trips. The reason is the work nature of trips in the 

morning, when the majority of trips are headed to work locations as opposed to heading back 

home. We also see that TAZs with a higher nonretail employment concentration tend to attract 

more workers during the morning peak, while nonretail employment shows a weak (negative) 

association with higher likelihood of a TAZ to be chosen. 

Finally, the geographical constant terms in our model show that TAZs with military bases or 

colleges in them are more likely to be chosen as morning peak work destinations, while TAZs 

with commercial airports are less likely.  
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Table 20. Destination choice model for the HBW, AM peak trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms  

Distance -0.178 0.010 -17.67 <0.001 

Distance Squared 0.00078 0.0002 4.89 <0.001 

Distance×Low-Income (<$25K) -0.0150 0.008 -1.81 0.070 

Distance×VO 0.000632 0.003 1.98 0.048 

Size Terms     

Ln(Population Density) -0.12031 0.015 -8.20 <0.001 

Ln(Retail Jobs) -0.0225 0.017 -1.33 0.183 

Ln(Non-Retail Jobs) 1.336 0.023 57.38 <0.001 

Geographical Constants    

Parks 0.0565 0.065 0.87 0.387 

Colleges  0.27897 0.062 4.51 <0.001 

Commercial Airports -0.261 0.123 -2.12 0.034 

Military Bases 4.509 0.335 13.46 <0.001 

N= 3007 

LL(0) = -8854.20 

LL(β) = -7774.33 

ρ2 = 0.122 

    

a SE is the standard error 

Table 21 shows the destination choice model for HBW trips in the PM peak period. With respect 

to the impact of distance and socioeconomics on destination choice, we see a similar pattern as 

discussed for the AM peak trips: more distant TAZs are less likely to be chosen and those living 

in higher income households or with higher number of vehicles are more likely to travel longer 

to their destinations. In contrast to the trips in the morning period, however, we see that those 

TAZs with higher population densities are more likely to be a chosen destination. This result 



 

88 

points to the fact that most trips in the PM peak are headed toward home, and TAZs with a 

higher residential population density tend to be among the destinations. 

With respect to employment, we see that the number of manufacturing and retail jobs have an 

insignificant relationship with the PM peak destination choice, while TAZs with a higher number 

of agricultural and service jobs are more likely to be among the destinations. 

Among the geographical constants, finally, we see that the college constant is the only significant 

one, with its negative sign indicating that TAZs with a college in them are less likely to be 

among HBW trip destinations in this time period. 
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Table 21. Destination choice model for the HBW, PM peak trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.189 0.010 -18.280 <0.001 

Distance Squared 0.000450 0.000 2.570 0.010 

Distance×Low-Income(<$25K) -0.0298 0.009 -3.270 0.001 

Distance×VO 0.0229 0.003 7.020 <0.001 

Size Terms     

Ln(Population Density) 0.0418 0.017 2.510 0.012 

Ln(Retail Jobs) -0.00645 0.020 -0.330 0.744 

Ln(Service Jobs) 0.540 0.027 19.900 <0.001 

Ln(Manufacturing Jobs) -0.0144 0.017 -0.860 0.389 

Ln(Agricultural Jobs) 0.304 0.021 14.830 <0.001 

Geographical Constants    

Parks -0.0870 0.078 -1.120 0.264 

Colleges  -.339 0.087 -3.880 <0.001 

Commercial Airports 0.0632 0.142 0.440 0.657 

Military Bases 0.346 0.509 0.680 0.497 

N = 2471 

LL(0) = 7402.45 

LL(β)= 6639.08 

ρ2 = 0.103 

    

a SE is the standard error 

Table 22 and table 23 show the results for the Midday and Night periods. In both models, we see 

similar relations between distance and socioeconomic variables with destination choice, with the 

difference that the Night period model does not have the polynomial distance term due to 

statistical insignificance. In the Midday period model, we see that retail job counts, unlike the 
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other models, have a positive association with destination choice, indicating that HBW trips to 

retail jobs are more likely to take place during the Midday period.  

Table 22. Destination choice model for the HBW, Midday period trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter  

Impedance and Interaction Terms    

Distance -0.270 0.020 -13.580 <0.001 

Distance Squared 0.00199 0.000 6.170 <0.001 

Distance×Low-income(<$25K) -0.0280 0.018 -1.550 0.122 

Distance×VO 0.0106 0.006 1.660 0.098 

Size Terms     

Ln(Population Density) -0.0526 0.026 -2.000 0.045 

Ln(Retail Jobs) 0.0642 0.032 2.020 0.043 

Ln(Non-Retail Jobs) 0.923 0.041 22.460 <0.001 

Geographical Constants     

Parks 0.159 0.119 1.330 0.183 

Colleges  0.1241 0.118 1.050 0.293 

Commercial Airports 0.0064 0.216 0.030 0.976 

Military Bases 3.828 0.549 6.970 <0.001 

N = 924 

LL(0)= 2711.07 

LL(β)= 2454.19 

ρ2= 0.095 

    

a SE is the standard error 
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Table 23. Destination choice model for the HBW, Night period trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.134 0.012 -11.030 <0.001 

Distance×Low-income(<$25K) -0.0294 0.011 -2.720 0.007 

Distance×VO 0.0121 0.005 2.650 0.008 

Size Terms     

Ln(Population Density) -0.0745 0.022 -3.440 0.001 

Ln(Retail Jobs) 0.00568 0.027 0.210 0.836 

Ln(Non-Retail Jobs) 0.978 0.035 27.970 0.000 

Geographical Constants     

Parks 0.169 0.105 1.620 0.106 

Colleges  -0.188 0.117 -1.610 0.108 

Commercial Airports -0.366 0.199 -1.840 0.066 

Military Bases 4.827 0.466 10.360 <0.001 

N=1120 

LL(0)= 3301.02 

LL(β)=3129.41 

ρ2 = 0.052 

    

a SE is the standard error 

Home-based Other Models 

The total number of HBO trips in our dataset is 29,764 cases. Similar to the HBW case, we 

segmented the trips into four segments based on the time-of-day periods. Table 24 shows the 

destination choice model for HBO trips during the morning peak. The distance polynomial 

variables show that, as expected, further TAZs are less likely to be chosen. Unlike other models, 

however, the impact of socioeconomic variables (through their interaction with the distance 

term) was too statistically weak to be included in the model. 
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We, furthermore, observe a positive association between both the population density and retail 

and nonretail employment counts and a higher likelihood of being chosen the destination, 

indicating that for HBO trips in the morning period, residential activity and employment activity 

both play a positive role in trip attraction. 

The geographical constants, in addition, show no statistical significance except for the military-

base indicator. The TAZs with a military base in them are more likely to be destinations for HBO 

trips in the morning. 

Table 24. Destination choice model for the HBO, AM peak trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.411 0.005 -78.670 <0.001 

Distance Squared 0.00473 0.000 38.480 <0.001 

Size Terms     

Ln(Population Density) 0.468 0.018 26.510 <0.001 

Ln(Retail Jobs) 0.0394 0.013 3.030 0.002 

Ln(Non-Retail Jobs) 0.743 0.018 40.870 <0.001 

Geographical Constants     

Parks -0.00181 0.052 -0.030 0.973 

Colleges  -0.0330 0.050 -0.670 0.505 

Commercial Airports 0.0992 0.090 1.100 0.270 

Military Bases 2.585 0.309 8.370 <0.001 

N = 6824 

LL(0) = 20006.64 

LL(β) = -14567.02 

ρ2 = 0.272 

    

a SE is the standard error 
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The PM peak model, as shown in table 25, shows similar relationship between distance and 

likelihood of being chosen as the destination. Moreover, we see a positive association between 

residential density and nonretail employment and destination choice in the PM peak period, 

while retail employment shows a statistically insignificant relationship in this period’s model. 

With respect to geographical constants, we see that TAZs with parks, commercial airports, and 

military bases are more likely to be among the destinations in the PM peak than the ones with 

colleges.  

Table 25. Destination choice models for the HBO, PM peak trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 .....(Fixed Parameter)..... 

Impedance and Interaction Terms    

Distance -0.365 0.006 -61.72 <0.001 

Distance Squared 0.00400 0.000 34.69 <0.001 

Size Terms     

Ln(Population Density) 0.875 0.017 50.20 <0.001 

Ln(Retail Jobs) -0.00447 0.011 -0.40 0.686 

Ln(Non-Retail Jobs) 0.408 0.016 26.31 <0.001 

Geographical Constants     

Parks 0.0836 0.043 1.96 0.050 

Colleges  -0.298 0.045 -6.59 <0.001 

Commercial Airports 0.206 0.073 2.83 0.005 

Military Bases 1.291 0.308 4.19 <0.001 

N = 9645 

LL(0) = 28313.04 

LL(β) = -21143.55 

ρ2 = 0.253 

    

a SE is the standard error 
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Table 26, showing the results for the Midday period trips, describes overall similar relationships 

as the previous models. The notable differences include the statistically significant interaction of 

the low-income household indicator with distance, indicating that lower income families tend to 

travel shorter distances to get to their HBO destinations.  

Table 26. Destination choice model for the HBO, Midday period trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.3472 0.005 -76.990 <0.001 

Distance Squared 0.00356 0.000 32.180 <0.001 

Distance×Low-Income(<$25K) -0.0124 0.005 -2.500 0.013 

Size Terms     

Ln(Population Density) 0.68916 0.017 41.430 <0.001 

Ln(Retail Jobs) 0.0479 0.011 4.280 <0.001 

Ln(Non-Retail Jobs) 0.500 0.016 31.860 <0.001 

Geographical Constants     

Parks 0.0372 0.043 0.860 0.390 

Colleges  -0.148 0.045 -3.290 0.001 

Commercial Airports 0.140 0.076 1.850 0.064 

Military Bases 1.792 0.282 6.360 <0.001 

N = 8965 

LL(0) = 26294.88 

LL(β) = -20448.01 

ρ2= 0.222 

    

a SE is the standard error 

Table 27 shows the results for the Night period trips. The results, in general, are in line with the 

previous models, and point out that a higher vehicle ownership is associated with choosing 
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farther destinations, and TAZs with commercial airports and military bases, all else equal, are 

more likely to be among chosen destinations. 

Table 27. Destination choice model for the HBO, Night period trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.382 0.010 -40.070 <0.001 

Distance Squared 0.00420 0.000 29.420 <0.001 

Distance×VO 0.00788 0.003 2.510 0.012 

Size Terms     

Ln(Population Density) 0.932 0.026 35.430 <0.001 

Ln(Retail Jobs) -0.0807 0.016 -4.960 <0.001 

Ln(Non-Retail Jobs) 0.418 0.023 18.410 <0.001 

Geographical Constants     

Parks 0.0287 0.061 0.470 0.640 

Colleges  -0.268 0.064 -4.170 <0.001 

Commercial Airports 0.212 0.112 1.880 0.060 

Military Bases 1.819 0.392 4.640 <0.001 

N = 4330 

LL(0) = 12749.99 

LL(β) = -9950.89 

ρ2 = 0.220 

    

a SE is the standard error 

Nonhome-based Trip Models 

The total number of NHB trips in our data is 18,610 cases. Similar to the previous two 

subsections, we will discuss the NHB destination choice with four segmented time-of-day 

models. 
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Table 28 and table 29 show the results for the NHB destination choice model during the morning 

and afternoon peak periods. The polynomial distance term in both models shows a negative 

association with chosen destination, and the negative sign of the interaction of low-income 

household and distance shows that lower income households are less likely to travel farther to 

get to their destination. 

The size terms, in addition, show that the TAZs with a higher population density or employment 

count are more likely to be among the chosen destinations. With respect to the geographical 

constant terms, we see that military bases in both models, all else equal, are more likely to be 

among the chosen destinations, while the TAZs with parks are less likely to be chosen in the 

afternoon peak model. 
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Table 28. Destination choice model for the NHB, AM peak trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.338 0.007 -46.510 <0.001 

Distance Squared 0.00395 0.000 24.520 <0.001 

Distance×Low-income(<$25K) -0.0138 0.008 -1.790 0.073 

Size Terms     

Ln(Population Density) 0.249 0.022 11.420 <0.001 

Ln(Retail Jobs) 0.0358 0.019 1.890 0.059 

Ln(Non-Retail Jobs) 0.957 0.026 37.000 <0.001 

Geographical Constants     

Parks 0.0780 0.072 1.080 0.281 

Colleges  0.0180 0.068 0.270 0.790 

Commercial Airports 0.145 0.123 1.180 0.237 

Military Bases 3.950 0.301 13.130 <0.001 

N = 3010 

LL(0) = 8822.44 

LL(β) = -7066.33 

ρ2 = 0.199 

    

a SE is the standard error 
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Table 29. Destination choice model for the NHB, PM peak trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.324 0.005 -61.760 <0.001 

Distance Squared 0.00362 0.000 29.670 <0.001 

Distance×Low-income(<$25K) -0.0293 0.007 -4.150 <0.001 

Size Terms     

Ln(Population Density) 0.412 0.018 22.900 <0.001 

Ln(Retail Jobs) 0.237 0.014 16.630 <0.001 

Ln(Non-Retail Jobs) 0.614 0.019 31.560 <0.001 

Geographical Constants     

Parks -0.111 0.053 -2.080 0.037 

Colleges  -0.0264 0.050 -0.520 0.601 

Commercial Airports 0.106 0.095 1.110 0.265 

Military Bases 1.441 0.475 3.030 0.002 

N = 5774 

LL(0) = 16964.27 

LL(β) = -13688.61 

ρ2 = 0.193 

    

a SE is the standard error 

Table 30 and table 31 show the results for the Midday and Night period trips, with the results 

being similar to the previous models. 
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Table 30. Destination choice model for the NHB, Midday period trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.394 0.00472 -83.70 <0.001 

Distance Squared 0.00469 0.00011 42.27 <0.001 

Size Terms     

Ln(Population Density) 0.316 0.0139 22.65 <0.001 

Ln(Retail Jobs) 0.241 0.0120 20.01 <0.001 

Ln(Non-Retail Jobs) 0.699 0.0161 43.28 <0.001 

Geographical Constants     

Parks -0.176 0.0458 -3.84 0.0001 

Colleges  0.0225 0.0416 0.54 0.5891 

Commercial Airports 0.0125 0.0768 0.16 0.8703 

Military Bases 3.479 0.296 11.72 <0.001 

N = 8537 

LL(0) = 25074.96 

LL(β) = -18291.41 

ρ2 = 0.270 

    

a SE is the standard error 
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Table 31. Destination choice model for the NHB, Night period trips. 

Explanatory Variable Coefficient SEa Z-value P-value 

Sampling Correction Term -1 Fixed Parameter 

Impedance and Interaction Terms    

Distance -0.349 0.011 -31.780 0.000 

Distance Squared 0.00425 0.000 16.860 0.000 

Size Terms     

Ln(Population Density) 0.327 0.035 9.260 0.000 

Ln(Retail Jobs) 0.185 0.030 6.120 0.000 

Ln(Non-Retail Jobs) 0.746 0.041 18.320 0.000 

Geographical Constants     

Parks -0.0974 0.108 -0.900 0.367 

Colleges  -0.0963 0.102 -0.950 0.344 

Commercial Airports -0.0860 0.226 -0.380 0.703 

Military Bases 4.545 0.816 5.570 0.000 

N = 1289 

LL(0) = 3786.54 

LL(β) = -3050.38 

ρ2 = 0.194 

    

a SE is the standard error 

SUGGESTIONS FOR MODEL IMPROVEMENT 

Although in this task we explored the viability of destination choice models and how they can be 

applied in the context of Georgia trip patterns, we saw that some models showed a lower 

goodness of fit than others. An important step in improving the accuracy of these models is to 

adopt a better impedance variable. In our modeling, we used distance as the main impedance 

variable, but travel time can help with model predictions if it is used appropriately. We 

recommend that in further iterations of these models, congested and uncongested travel times be 

used instead of distance as the main impedance variable according to the time of day of each 
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model. In addition, further and more detailed geocoding of geographical features of TAZs can 

better capture unique destination patterns among trips. 
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CHAPTER 6. DEVELOPMENT OF A MODE CHOICE MODEL 

Understanding mode choice is a critical component in most travel demand modeling across a 

variety of geographical scale, and the GSTDM is not an exception. As part of this research 

project, the research team seeks to enhance the collective understanding of a mode choice 

component in the GSTDM. The current mode choice model in the GSTDM consists of two 

purpose-specific parts (business and nonbusiness models) and includes only mode attribute 

characteristics. Since the latest version of NHTS has been released and additional data sources 

are available, a more sophisticated modeling approach and corresponding choice model can be 

developed. 

GDOT Report 18-24 (Kash, Mokhtarian, and Circella 2021) provides an initial exploration of 

mode use in the 2017 NHTS Georgia add-on. Specifically, they discuss the mode share of all the 

recorded travel modes in the 2017 NHTS Georgia add-on, and further compare mode shares 

across MPO tiers in Georgia. Readers are encouraged to refer to GDOT Report 18-24 for further 

discussion on the mode share overview in Georgia. 

COMPOSITION OF THE MODE CHOICE MODEL 

The mode choice model is divided into short- and long-distance models based on the trip length 

with a threshold of 50 miles. That is, short-distance trips refer to trips that cover the distance for 

50 miles or less, whereas long-distance trips cover the distance for more than 50 miles. Figure 34 

presents the share of mode for travel by distance. As indicated, one primary differentiating 

characteristic between short- and long-distance trips is that, on one hand, short-distance trips had 

a nonnegligible share of nonmotorized trips (e.g., walking and bicycling). On the other hand, the 

air mode accounts for a significant portion of long-distance trips. It apparently shows why 
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distance-based segregation is needed: totally different mode choice composition and relevant 

heterogenous behavioral characteristics. 

 

Figure 34. Stacked bar graphs. Share of mode choices for short- and 

long-distance trips by trip purpose.  

SHORT-DISTANCE TRIPS 

This section elaborates on the data assembly process for short-distance trips, descriptive statistics 

of select indicators in the dataset, the methodology for estimating the models, and the results as 

the basis for evaluating travelers’ behavior in Georgia. 

Data Assembly Process 

As mentioned above, the research dataset for task 4 is constructed by incorporating alternative, 

nonchosen modes for each trip observation. In assembling the data, the research team 

incorporates a framework that combines the existing primary data (i.e., the NHTS add-on for 
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Georgia) with emerging data sources derived primarily from Google API (application 

programming interface) needed to incorporate the nonchosen modes. In doing so, the research 

team has developed a script-based, automated process as applicable in the R Studio environment 

to obtain travel time information for these following modes, i.e., auto, transit, bike, and walk, 

using Google Maps Distance Matrix API. The decision to incorporate these modes stems from 

these factors: (1) the research team considers these modes as an appropriate representation of the 

available modes for travelers in Georgia, following the framework as presented in figure 35; 

(2) Google API provides a robust travel time estimation for these modes; and (3) leveraging the 

Google API, the choice of these modes enables a scalable application within and across 

geographies in Georgia. 
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Figure 35. Classification chart. Linking mode classification between NHTS and GSTDM. 

Travel Time Information: Google API Query  

The query process to obtain travel time requires the following sets of information: date, time, 

origin, and destination of the trips. This particular level of comprehensive information necessary 

to obtain travel time of the nonchosen modes for each trip highlights the benefits of adopting the 

add-on component of the NHTS data. The research team highly values the availability of the 

NHTS add-on data component for Georgia and recommends that GDOT consider continuously 

adopting the add-on component in the foreseeable future.  
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One particular aspect to note is that Google API would not allow a query for historical dates; that 

is, either at this moment or in the future (Google, 2021). To address this apparent shortcoming, 

the research team added 5 years from the actual date when the trip took place. Since most of the 

trips in the Georgia NHTS add-on took place between 2016 and 2017, the query process, 

therefore, functions as if the trips were in 2021 to 2022. The logic behind selecting this 5-year 

timeframe stems from the practicality and the current COVID-19 pandemic. From the 

practicality perspective, the project was started in mid-2019 and the team initiated the query 

process in Spring 2020. From the perspective of the current COVID-19 pandemic, running the 

query process using the year of 2020 might bias the estimation due to the notion that travel 

demand generally declined in Georgia and elsewhere in most parts of the country in 2020. In 

terms of time, we adopt the hours and minutes from the NHTS as it is. Thus, an example of the 

adopted timestamp for running a query would be instead of using, for instance, 2016-04-18 5:47 

PM, we use the following: 2021-04-18 5:47 PM. 

The query process has also benefited from the considerable level of granularity of the origin and 

destination for each trip as available in the NHTS add-on. While the data do not disclose or 

provide the exact XY coordinates of each origin and destination combination, the data provide 

census tract identifiers. The presence of census tract identifiers has allowed the research team to 

construct spatially embedded XY coordinates at the centroid of each census tract used to run the 

query process. 

Data Cleaning and Wrangling 

Having collected travel time information from Google API, the research team applies a suite of 

data cleaning and wrangling processes to ensure the applicability of the dataset to run the mode 
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choice analyses, particularly for short-distance trips that occurred entirely or partially in Georgia. 

The research team applies several layers of the cleaning and wrangling process that involves: 

(1) evaluating the obtained travel time information derived from Google API, and 

(2) comparison between the NHTS and Google API. 

In evaluating the obtained travel time information derived from Google API, the research team 

identifies one notable issue: the potentially imprecise travel time information from the NHTS 

add-on data. As indicated in figure 37, the distributional density of travel time on the NHTS add-

on data tends to follow an arbitrary 5-minute interval of travel time. One potential explanation of 

this issue is due to the circumstance where the survey instrument relied largely on the 

respondents’ memorization of the travel time on a particular mode. This subsequently could lead 

to the rounding of travel time information into a 5-minute interval, i.e., 5, 10, 15, 20 minutes, and 

so on as observed in the data. The research has, therefore, explored the data further to evaluate 

whether this observation holds true across the primary modes of travel incorporated in the short-

distance trips dataset. 
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Figure 36. Scatter plot. AllTransit score for the origin and destination combination by 

mode (auto and transit), short-distance trips. Larger values denote 

greater transit presence. 

 

Figure 37. Area graph. Density distribution of travel time between NHTS and Google API. 

This observation is particularly telling when observing the distributional density of travel time on 

auto as shown in figure 38(a). As a note, this issue is not unique to travel time on auto, but can 
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also be observed in other modes, e.g., walking and bicycling, as shown in figure 38(b), albeit 

with a reasonably less distinct characteristic than auto. 

 

Figure 38. Area graphs. Density distribution of travel time 

from NHTS add-on data, short-distance trips.  

Given the prevalence of rounded travel time into a 5-minute interval, the research team has 

sought to compare the NHTS add-on data with travel time information derived from Google API, 

as evidenced in the analysis as shown in figure 37. Figure 39 shows the distributional density of 

(a) 

(b) 
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travel time derived from Google API. Comparing the observation from figure 44 with the one 

from figure 38, it is apparent that the distributional density of travel time from Google API tends 

to follow a smoothed distribution, which might be more representative of the actual observation 

of the trips captured in the NHTS data.  

 

Figure 39. Area graphs. Density distribution of travel time 

derived from Google API, short-distance trips. 
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Given that travel time derived from Google API yields a more realistic representation of the 

trips, the research team has decided to adopt the travel time from Google API into the short-

distance trips dataset.  

Fuel Cost, Parking, and Transit Fare 

Another challenge arising from incorporating nonchosen travel modes for estimating mode 

choice models is calculating fuel cost and transit fare. The research team has incorporated data 

from various sources and applied several logics and assumptions to address this challenge. 

Fuel Cost. In terms of fuel cost, the research team makes use of several existing indicators in the 

NHTS add-on dataset and data from a vehicle fuel efficiency database.6 The research team links 

information of vehicle make and brand in the NHTS add-on data (i.e., the vehicle module at the 

household level) with the vehicle fuel efficiency database. To compute the estimated fuel cost for 

both chosen and nonchosen auto trips, the research team multiplied the estimated fuel 

consumption per mile on city road, instead of highway, with the distance covered for the 

corresponding trip considering the gasoline prices at that time. For instance, a traveler living in a 

household owning a Honda CR-V and using the car to cover a distance of 9.5 miles would spend 

an approximate $0.57 in fuel cost given the estimated vehicle efficiency of a Honda CR-V at 

36.41 miles per gallon (mpg) and gasoline prices at 219.5 cents per gallon. 

Parking. In terms of parking cost, the research team follows several layers of logic. One 

particular consideration is the mode choice; that is, we assume travelers would not spend any 

out-of-pocket monetary parking cost if the travelers in question did not drive or ride as a 

 

6 The database contains information of vehicle fuel efficiency for thousands of cars by brand and make in the U.S. 

Due to the proprietary nature of the database, contact the research team to gain access to this database.  
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passenger in a car trip. Another consideration is the destination of the auto trips; that is, we set 

forth a scenario on the estimated parking cost based on the locational characteristics of the 

destination. In classifying the locational characteristics, and subsequently the estimated parking 

cost, the research team follows the area classification as adopted in the ‘URBANICITY’ variable 

in the NHTS add-on data. This variable, derived from Claritas (2020), captures the rural–urban 

continuum in the NHTS data that consists of rural, small town, suburban, second city, and urban. 

Using this variable, the research team has, therefore, assigned parking cost where parking cost is 

assumed as zero in the rural, small town, and suburban areas; the hourly parking rate for areas 

classified as second city and urban are accordingly assigned based on the research team’s 

tailored investigation.  

In estimating parking cost, the research team also considers the estimated parking duration. In 

probing the duration, the research team has computed the hourly interval before the auto traveler 

took the subsequent trips. Using the estimated parking duration, the research team multiply the 

duration with the hourly rate following area classification as mentioned above. Moreover, the 

research team also differentiates between parking over an extended period (e.g., daily parking) 

and short-term period. That is, if parking duration would last for more than 4 hours, the research 

team assigns $19 daily rate in the corresponding areas where parking cost is levied. 

Transit Fare. In determining the estimated transit fare, the research team has compiled transit 

fare for each transit agency in Georgia, as well as in the adjacent states where the trips crossed 

the state boundary (table 32). Google API has proven to be useful for this process as it could 

return the information of the transit agency for the corresponding trip. 
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Table 32. Transit fare in Georgia. 

Transit Agency Travel Cost ($) 

Atlanta Street Car 1 

Cherokee Area Transit 1.25 

Cobb Linc 2.5 / 5 

Gwinnet County Transit 2.5 / 3.75 / 5 

GRTA Xpress 3 / 4 

Marta 2.5 

Athens 1.75 

Augusta 1.25 

Savannah 1.5 

 

Combined Travel Cost. Considering several aspects related to travel cost as described above, 

figure 40 depicts a comparison of frequency distribution of travel cost (USD) between auto and 

transit. As shown in the figure, on one hand, travel costs for auto tend to be distributed heavily 

on the left side, where most are not more than $1. On the other hand, travel costs for transit tends 

to be distributed sparsely, and more or less follow the $0.5 interval from one distribution to 

another.  

 

Figure 40. Histogram. Estimated travel cost for auto and transit. 
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Access and Egress Time and Mode 

An additional consideration in assembling the data is developing considerably realistic access 

and egress information for both chosen and nonchosen transit trips. For instance, a traveler who 

owns a car is assumed to use the car for accessing the station; therefore, it might be unrealistic to 

assume that the traveler in question would walk covering lengthy distances to access transit 

stops. In addressing this aspect, the research team adopts this following framework. If 

access/egress distance is longer than 1 mile, it is assumed that travelers take transit or auto 

depending on mode availability for first or last mile travel (labeled as public transit with a 

motorized mode). Otherwise, all travelers are assumed to walk to reach a station or destination 

(labeled as public transit with a non-motorized mode). 

Mode Share Distribution for Short-distance Trips 

Figure 41 shows the mode share distribution for short-distance trips that occurred entirely and or 

partially in Georgia. The primary finding is as expected since a strong majority of travelers in 

Georgia use automobile as their primary mode of travel across different trip purpose.  



 

115 

 

 
All purpose 

 
HBW 
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Figure 41. Pie graphs. Share of mode choices for short-distance trips by trip purpose. 

Model Specification 

Mode Choice Set 

As presented in figure 35, the research team regroups the two-level mode choice set, including 

five modes at the upper level (i.e., auto, bike, walk, taxi, and transit). At the lower level, auto is 

divided into driver and passenger, and transit is also split into two specific modes based on the 

access/egress mode indicating whether those first- and last-mile modes are motorized or 
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nonmotorized. Thus, the final model choice set includes seven specific modes, as illustrated in 

figure 42. 

 

Figure 42. Model diagram. Mode choice set with nested structure. 

The research team also constructs an unequal choice set, considering what alternatives are 

physically available for given situations. Traditional mode choice models have a universal choice 

set that all travelers are assumed to have equal mode choice options regardless of their mode 

accessibility. This assumption is considerably unrealistic and not straightforward. Thus, for those 

who have different modal options, the mode choice set needs to be adjusted to reflect the 

circumstance. For example, a traveler who does not have access to transit at home cannot choose 

the transit mode at the beginning of the home-based trip. It was also motivated by some 

paradoxical cases in the NHTS dataset; there are travelers choosing car even though they did not 

own a car. In this case, the car mode needs to be excluded from the choice set, and other possible 

options are required to define the mode they used (e.g., passenger or rental car). To create the 

unequal choice set, every trip in the Georgia add-on sample are examined, then only the 

available mode options are added in the choice set, which is the called individual-specific choice 

set.  
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Explanatory Variables 

The final set of explanatory variables consists of three categories, including mode attributes, 

socioeconomic demographics (SED) traits, and accessibility.7 There are multiple sources that 

were used to define the explanatory variables. As described above, mode attributes are mainly 

collected by combining 2017 NHTS trip information and Google API. The SED traits are from 

the 2017 NHTS (individual and household information). Accessibility indicators are defined 

using AllTransit data provided by the Center for Neighborhood Technology. 

Table 33 demonstrates mode attribute variables selected in the final model. Travel time is 

divided into in-vehicle travel time (IVTT) and out-of-vehicle time (OVTT). All modes have 

IVTT, but only car and transit have OVTT. Regarding transit, three specific OVTT indicators, 

including terminal, waiting, and transfer times, are merged altogether to calculate total OVTT. 

Travel cost is a single variable combining fuel cost, parking fee (only for car), and transit fare 

(only for transit). In the case of bike mode, travel cost is not assigned based on the assumption 

that all cyclists own and use their bike to travel.  

 

7 In initial exploration with various model specifications, some built environment characteristics were also 

considered, but proved to not be significant at the 10 percent level. Therefore, they were excluded from the final 

model. 
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Table 33. Mode attribute variables of the mode choice model. 

Variable Mode Description 

In-vehicle Travel Time 

(IVTT)a 

Car  

Taxi 
Driving time 

Transitg On-board time 

Bike Biking time 

Walk Walking time 

Out-of-vehicle Travel 

Time (OVTT) 

Terminal time 

Carb 

Urban = 5 minutes 

Suburban = 3 minutes 

Rural = 1 minute 

Transitc,g 

(1) Walking time from/to a station or 

(2) driving time from/to a station if trip 

length is longer than 1 mile 

Waiting time,  

Transfer time 
Transitg 

High frequency = half of headway 

Low frequency = 5 minutes 

Travel Cost 

(US dollars) 

Fueld Car 
𝑇𝑟𝑖𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑖𝑙𝑒)

𝐺𝑎𝑠 𝑚𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑝𝑔)
 × 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 ($/𝑔) 

Toll fee Car Zero (not considered) 

Parking fee 

(monthly)e 
Car 

Average daily parking fee for 

(1) those who are full-time workers and 

work in urban areas, or 

(2) those who are university (or 

graduate) students 

Parking fee 

(one-time) 
Car 

Urban = $4/hr ($24/day more than 6 hrs) 

Second city = $1 

Other = $0 

Fare 

(monthly pass)f 
Transitg 

Average daily transit fare (e.g., $4/day) 

for those who are full-time workers or 

students 

Fare 

(one-time) 
Transitg 

Assign transit fares depending on the 

transit line 
a IVTT was obtained from Google API. 
b Car depends on locations of origin and destination. 
c Transit was obtained from Google API. In particular, the threshold of 1 mile is determined based on the Transit Capacity and 

Quality of Service Manual (TCQSM). 
d Official fuel economy data including EVs and hybrid cars were used. 
e Parking fee (monthly) was applied to specific trip purposes (commute to work or attend school). 
f Full-time workers or students were assumed to purchase the monthly pass for all trips. 
g Information about available transit lines from Google API and relevant transit fare information, which were manually collected 

from MPO agencies, are combined. 

Table 34 shows selected SED. Those variables are mostly identified based on the Georgia add-on 

sample. It is classified into individual and household categories. In addition, two additional 
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variables (active driver and vehicle sufficiency) are created to explain whether individuals are 

able to drive and own the available personal automobiles in their household.8 

Concerning accessibility, seven specific variables are initially selected to estimate the final 

model, indicating to what extent public transit is accessible to travelers (table 35) as introduced 

in chapter 2.  

Table 34. Socioeconomic variables of the mode choice model. 

Category Variable Description 

Individual 

Female 1 = Yes, 0 = No 

Age Continuous 

Under 16 years 1 = Yes, 0 = No 

Education Categorical 

Employment 1 = worker, 0 = nonworker 

Active driver 1 = Yes, 0 =No 

Household 

Household size Continuous 

Vehicle ownership Continuous 

Income Categorical 

Number of drivers Continuous 

Vehicle sufficiency 1 = Yes, 0 = No 

Attitudes Perceived health status 1 (excellent) to 5 (poor) 
Note: All socioeconomic variables are from the 2017 NHTS dataset. 

 

8 If individuals do not have enough vehicles in their household, they are not able to choose auto even though they 

hold a driver’s license and have the ability to operate it. It clearly represents vehicle accessibility. 
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Table 35. Accessibility variables of the mode choice model. 

Category Variable Description 

AllTransit Score Performance score 1 (poor) to 10 (excellent) 

Transit Accessibility 

Walkable neighborhood Continuous 

# of jobs (workers) accessible 

in 30 mins transit ride 
Continuous 

Transit connectivity index 0 (poor) to 35 (excellent) 

Transit trip per week Continuous 

# of transit stops within 

½ mile 
Continuous 

# of high frequency transit 

routes within ½ mile 
Continuous 

Note: Accessibility variables were defined using AllTransit data provided by the Center for Neighborhood. Technology. 

Estimation Results 

Mode Choice Model for All Purposes 

The final estimation result is presented in table 36. The research team only presents the all-

purpose model, not purpose-specific mode choice models such as HBW, NHB models. Initial 

exploration includes various model specifications with multinomial logit forms, but those results 

did not provide an acceptable goodness of fit, or some key variables (e.g., travel time or cost) 

were not significant. In addition, the ultimate goal of this research is to propose an improved 

modeling approach for the statewide model in Georgia (not a microscopic behavior model); thus, 

the research team has concluded that purpose-specific models are not necessary, and the all-

purpose model can be used for future prediction and analysis in the context of the GSTDM. 

The final model exhibits a decent model fit (adjusted rho squared = 0.377). All explanatory 

variables other than the alternative specific constant for taxi are statistically significant at the 

5 percent level, with the expected signs. The model clearly shows that: (1) travelers are more 

likely to prefer a personal mode to public transit or active modes; (2) mode attributes including 

travel time and cost have negative impact on mode choice which is plausible and aligns with 
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extensive literature on mode choice behavior; (3) driving availability (i.e., active driver and 

vehicle sufficiency) is a critical factor in choosing car, implying that building an unequal choice 

set to take individual mode availability into account is imperative to describe mode choice 

behavior at a deeper level; and (4) transit accessibility is also a key variable to define mode 

availability and the corresponding model mode choice mechanism by accounting for whether 

individuals are able to access transit. 
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Table 36. Mode choice model for all purposes (nested logit form). 

Explanatory Variable Coefficient SEc Z-value P-value 

Alternative Specific Constant     

Drive 1.035 0.075 13.885 <0.001 

Passenger 0.415 0.093 4.477 <0.001 

Bike -1.271 0.160 -7.935 <0.001 

Walka - - - - 

Taxi -0.056 0.612 -0.091 0.464 

Public transit (motorized AE) -1.397 0.170 -8.211 <0.001 

Public transit (nonmotorized AE) -1.862 0.109 -17.074 <0.001 

Mode Attributes     

IVTT_auto -0.147 0.002 -66.354 <0.001 

IVTT_passenger -0.143 0.002 -61.025 <0.001 

IVTT_taxi -0.102 0.009 -10.811 <0.001 

IVTT_PT -0.014 0.002 -7.303 <0.001 

OVTT_passenger -0.064 0.011 -6.023 <0.001 

OVTT_taxib -0.172 0.036 -4.786 <0.001 

Total time_bike -0.164 0.007 -23.305 <0.001 

Total time_walk -0.057 0.001 -40.562 <0.001 

Cost -0.108 0.010 -10.974 <0.001 

SED     

Female -0.188 0.073 -2.568 0.005 

Age -0.011 0.002 -5.555 0.000 

Worker 0.349 0.093 3.755 0.000 

Active driver 0.121 0.028 4.33 0.000 

Under 16 years 1.807 0.089 20.235 0.000 

Vehicle sufficiency 1.229 0.053 23.303 0.000 

Accessibility     

Average performance score 0.074 0.015 5.101 0.000 

Nesting Parameters     

Auto 0.992 0.033 29.784 0.000 

Public transit 0.285 0.049 5.786 0.000 

N = 53,814 

LL(c) = -39,670.34 

LL(β) = -24,715.74 

Adjusted ρ2 (MS)= 0.377 
a Walk is the reference mode. 
b Coefficients of OVTT for public transit with motorized and nonmotorized access/egress modes are equal to IVTT_auto and 

IVTT_walk. 
c SE is the standard error. 
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In the meantime, the research team identifies a fundamental limitation on the practical 

application of the proposed mode choice model. Value of travel time savings (VOTTS) is 

generally utilized to evaluate mode choice model from the economic perspective by using travel 

time and cost coefficients. In the present research, VOTTS for auto is considerably higher than 

expected. It is generally known that the range of VOTTS for auto ranges somewhat varies, but 

most previous studies and guidelines suggest $10 to $40 per hour based on socioeconomic 

conditions of each country. In particular, The United States Department of Transportation 

(USDOT 2016) proposes that VOTTS for local travel are $13.6/hour, $25.4/hour, and $14.1/hour 

for personal, business, and all purposes, respectively. It also suggests that VOTTS for intercity 

travel are $19.00/hour (personal), $25.40/hour (business), and $20.40 (all purpose). However, 

VOTTS for auto in the proposed model are $80/hr on average (VOTTSdrive = $82/hr, 

VOTTSpassenger = $79/hr) which is substantially higher than the U.S. guidance. On the other 

hand, VOTTS for other modes show relatively reasonable ranges; VOTTS for taxi and public 

transit are $57/hr and $8/hr, respectively.  

After discussion, the research team determined that extremely short-distance auto trips may 

result in the biased estimation. In most cases, those auto trips are likely to be a part of a tour, 

meaning that they are dependent on other major, primary auto trips, so people accordingly use 

car regardless of travel impedance (time and cost). In this case, travel time and cost do not affect 

mode choice decision, and even may lead to higher VOTTS because those factors are not critical 

in choosing the car mode, and people would choose car even though travel time and cost for auto 

is higher than other modes (i.e., the impact of travel time/cost can be biased). On the other hand, 

trips made by taxi and public transit are relatively independent, meaning that they are less 
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affected by tour characteristics and other modes/trip purpose within the same tour, resulting in 

more plausible estimations of time value. 

To examine variations of VOTTS and see how those short auto trips affect VOTTS, additional 

mode choice models stratified by trip purpose are developed after excluding such short auto 

trips. Three different thresholds are applied: 0.5, 1, and 2 miles, and VOTTS for IVTT and 

OVTT are calculated across scenarios (table 37). However, the result shows that there is no 

significant improvement on VOTTS; VOTTS for auto and taxi are still higher than the generally 

accepted range. 

Table 37. Comparison of VOTTS by model. 

 

LONG-DISTANCE TRIPS 

In contrast to the short-distance trip dataset in which we had a sufficient number of trips in the 

2017 NHTS Georgia add-on to estimate a mode choice model, the total number of long-distance 

trips was too small and unimodal to allow for a robust model estimation. The research team tried 

to gather more long-distance data from other similar states, but given the timeline of the project, 

could not gather enough long-distance data from the other identified states. In this section, 
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therefore, we provide an exploratory analysis of the long-distance trips in Georgia, and provide 

recommendations on how GDOT can proceed with data collection and model estimation in the 

future. 

Exploratory Analysis of 2017 Georgia NHTS Long-distance Trips 

There are a total of 1186 long-distance trips in our dataset, of which, 774 (65.3 percent) took 

place completely and 412 (34.7 percent) took place partially in Georgia. Figure 43 shows the 

mode share distribution of long-distance trips based on whether they happened completely or 

partially in Georgia. As this figure shows, most of the long-distance trips that happened 

completely in Georgia were accomplished with an automobile (96.6 percent), with very few 

cases completed using transit or airplane. For the trips taking place partially in Georgia, 

however, airplanes show a 20 percent mode share, a significant difference compared to the mode 

share of trips completely within Georgia. 

 

Figure 43 Stacked bar graph. Mode share distribution 

of long-distance trips based on location in Georgia. 
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Figure 44 shows the distribution of all long-distance trips by mode and trip purpose. Automobile 

is the dominant mode for long-distance travel for all trip purposes, especially for HBW and HBO 

purposes. Air travel and transit, moreover, constitute larger shares of mode choices for NHB 

travel than the other purposes, although automobile is still the dominant mode of travel for this 

trip purpose. Other modes of travel, including bicycle and walking, constitute negligible shares 

in all long-distance trip purposes. 

 

Figure 44. Stacked bar graph. Mode share for all long-distance trips 

by trip purpose in Georgia. 
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Table 38, moreover, shows the distribution of (all of Georgia’s) long-distance trip distances by 

mode of travel. As this table shows, trips completed on an airplane have the highest median, 

while transit trips have the lowest median of all modes. 

Table 38. Distribution of long-distance trip distances 

by mode of travel in Georgia. 

Travel 

Mode 

Descriptive Statistics of Trip 

Distances (miles) 

Min. Median Mean Max. 

All 50.02 93.73 172.47 5035.61 

Automobile 50.02 87.72 127.41 866.73 

Airplane 83.14 605.31 959.18 5035.61 

Transit 50.98 78.29 193.61 822.36 

Other 75 320.1 320.1 565.1 

 

Augmenting Data with Comparable States  

Given the relatively few cases of long-distance trips in the NHTS Georgia add-on data, an 

additional consideration for assembling long-distance trips dataset is by including long-distance 

trips data derived from other states that also have the add-on component. This approach might be 

somewhat challenging since whether states participate in the add-on data collection could be 

driven by unobserved factors. Notwithstanding, several criteria can be applied to identify 

comparable states that have add-on data and use it to augment the long-distance trips dataset. 

One of the proposed approaches is by identifying the trips flow characteristics as illustrated in 

figure 45. In particular, this approach could shed light on the directionality of the trips based on 

the geographic characteristics of the origin and destination. As indicated, the trips flow 
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characteristics of Georgia mimic those of North Carolina, South Carolina, and to some extent 

Arizona, where the ratio of the trip origin and destination geographic characteristics combination 

appear to be somewhat similar. On the contrary, most long-distance trips in California originated 

and ended in urban areas; thus, incorporating long-distance trips from the California data to the 

augmented long-distance trips might not be an appropriate decision. A similar observation can be 

made for the Wisconsin add-on data where a substantial share of long-distance trips occurred 

between rural areas.  

 

Figure 45. Diagrams. Trip flows by rural–urban continuum area classification for select 

states that have an NHTS add-on data component. 

In addition to this data-driven approach, another method that can be considered is through a 

qualitative assessment of a given state’s urban spatial structure. This entails an assessment of 

whether the state has a dominant metropolitan area that dwarfs the rest of the metro or urban 
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areas within that state. Case in point would be Georgia itself that hosts the Atlanta metro, while 

the second largest metro, i.e., Augusta, pales in comparison to Atlanta. 

The research team contacted the identified states’ DOTs, but given timeline of this project could 

only obtain data from the South Carolina (SC) DOT. We recommend that future efforts continue 

the collection of datasets from the identified similar states, while in the following section, we 

provide an initial exploratory analysis of the SC NHTS long-distance trip data, and compare it to 

that of Georgia. 

Exploring 2017 South Carolina NHTS Long-distance Trips 

There are 1243 cases of long-distance trips in the 2017 NHTS SC add-on data, the mode share 

for which is shown in figure 46. Similar to Georgia, automobile trips in South Carolina constitute 

a strong majority of all long-distance trips. The share of air travel, in addition, at 6.5 percent, is 

approximately equal to that of Georgia. In addition, air travel constitutes a more significant 

portion of long-distance NHB trips than other purposes, an observation also matched by the state 

of Georgia. 
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Figure 46. Stacked bar graph. Mode share for all long-distance trips 

by trip purpose in SC. 

Table 39 also investigates the distribution of the long-distance trip distances in the SC dataset. 

This distribution is overall quite similar to Georgia’s, with median and mean of all trips 

approximately corresponding to those of Georgia. The mean and median of automobile and air 

travels are also similar to Georgia’s, but transit trips in South Carolina appear to be on average 

longer. We should caution that the number of transit long-distance trips in both datasets are very 

small, so making any conclusions based on these small numbers may be difficult. 
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Table 39. Long-distance trip distance distribution 

by mode of travel in SC. 

Travel 

Mode 

Descriptive Statistics of Trip 

Distances (miles) 

Min. Median Mean Max. 

All 50.01 97.53 187.63 6555.40 

Automobile 50.01 89.88 125.97 2588.85 

Airplane 88.28 611.71 1067.28 6555.40 

Transit 50.90 119.88 157.08 458.80 

 

Overall, this exploratory analysis of South Carolina’s long-distance trip data confirms its 

similarities to Georgia’s, and that future analysis can augment Georgia’s dataset with South 

Carolina’s to estimate a more robust long-distance mode choice model. 
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CHAPTER 7. ADDITIONAL IMPROVEMENT TO THE GSTDM: 

PROPOSING A TOUR-BASED APPROACH 

In the traditional trip-based framework, each trip is treated as independent, meaning that there is 

no interaction between trips. In a broad sense, however, some trips are closely connected to each 

other, in particular when they belong to the same trip chain (a series of trips made by people 

sequentially). Krizek (2003) also pointed out that there are two specific problems with the 

traditional trip-based model; it treats each trip in an isolated manner, and it does not account for 

travel combining multiple purposes. The following is a simple case showing why the traditional 

trip-based model is not appropriate in explaining the changed trips. If a commuter takes public 

transit to come to the office, that person is not allowed to drive a personal automobile within the 

same tour because “driving car” is physically unavailable (although the car is parked at the 

workplace). Thus, the car mode must be excluded from the choice set in this case. However, it is 

not taken into account within the frame of the trip-based model. As mentioned above, each trip is 

treated as independent, so a universal choice set is usually given to all travelers without 

considering mode availability. 

This limitation motivated the research team to consider and develop a tour-based mode choice 

model. To confine mode choice sets to specific modes available to a trip, the overall decision-

making process of a tour trip needs to be clarified, and a corresponding modeling approach is 

required to clearly estimate the chosen mode for each trip within a tour. In this respect, the 

research team: (1) defines tours and trips within the frame of the tour-based model, (2) collects 

and manipulates the 2017 NHTS Georgia add-on sample, (3) estimates the tour-based model as 

an alternative approach for the mode choice modeling in the GSTDM, and (4) discusses its 

limitations in practical application. 
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DEFINITION OF TOURS 

McGuckin and Nakamoto (2004) stated that a tour is the “total travel between two anchor 

destinations, such as home and work, including both direct trips and chained trips with 

intervening stops. Note that it is possible to have the two anchor destinations be the same 

location, as in a home-to-home or work-to-work tour.” A tour is generally defined as a home-to-

home loop (i.e., home-based tour), and then it is broken down into each trip between two stops 

(Krizek 2003). The research team, accordingly, defined a tour in the same way. A tour denotes 

combined trips with multiple stops that belong to a same home-to-home loop, meaning that the 

first origin and the last destination are both home, and the remaining origins and destinations are 

non-home-based. 

In order to define a tour, the primary purpose for the tour and the corresponding mode first need 

to be identified. The primary purpose reflects the most important decision that the traveler made 

during the trip. The research team hypothesized that travelers first choose a primary purpose and 

mode, then the remaining trips within the same tour are made conditional on the primary purpose 

and mode. The latter set of trips is referred to as secondary trips. That is, each tour consists of a 

single primary trip and multiple secondary trips. 

A quick example of a tour is presented in figure 47. The following case is a home-based tour, 

comprising five dependent trips: (1) shopping from home to the store, (2) commute from the 

store to the office, (3) dining out from the office to the restaurant, (4) shopping from the 

restaurant to the store, (5) and returning home from the store. In terms of the traditional trip-

based approach, those five trips are treated as independent, but that is not appropriate in the 

context of the tour-based model. When estimating a mode choice model based on that tour, the 
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car mode is not expected to be considered as an available alternative except for the first trip leg 

because the traveler does not drive from home, meaning that the driving option is not physically 

available. Thus, the second, third, fourth, and fifth trips must not include “driving a car” as an 

alternative in the choice set. It shows that some (or even all) trips are conditional on a specific 

mode choice.  

In the case above, the research team conjectured that commute to the office (work purpose trip) 

is the primary trip, and the rest of the trips are secondary trips. This is based on the assumption 

that the traveler first decides to use public transit to commute, then selects one of the available 

modes for the rest of the trips. Therefore, the primary purpose and mode are work and public 

transit, respectively. Of course, there is a possibility that the mode for dining out can be the 

primary mode if the traveler plans to drink, so he/she has decided not to drive the car. However, 

the research team did not consider those exceptional cases in a broad sense to estimate a 

conventional model in the context of the statewide level. 

 

Figure 47. Diagram. Example of a home-based tour. 

Another way to characterize tours and their individual tour legs is embedded in the Atlanta 

Regional Commission’s model. The tour composition presented in figure 47 may also be 
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illustrated as shown in figure 48. Two main legs can be specified when their origins or 

destinations are directly connected to the primary purpose. Then, all trip legs before the main leg 

are defined as inbound legs, and the remaining tour legs except for the main leg can be labeled as 

outbound legs. 

 

Figure 48. Diagram. Composition of a home-based tour. 

DATA COMPOSITION 

The research team used the same dataset as in chapter 5 (i.e., the 2017 NHTS dataset). In order to 

define tour trips, a set of appropriate variables, which are included in the original dataset and 

denote tour-related characteristics, were used. Therefore, all independent trips are successfully 

grouped as tour trips. The following subsections explain how the whole process was conducted. 

Tour-related Variables 

There are several variables reflecting tour characteristics in our dataset. One of the most useful 

variables was the “hometrip” variable, which was generated and shared with us by another 

GDOT research team (Kash, Mokhtarian, and Circella 2021). The hometrip variable is a 

categorical variable with four types of trip characteristics identifying each trip as: (1) home-
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based start, (2) home-based end, (3) home-based loop, or (4) non-home-based trip (refer to 

figure 49). By sorting all trips by departure and arrival times, and then grouping trips by the 

hometrip variable by trip case (txcaseid in figure 49), each tour was defined with a unique tour 

ID and corresponding details of tour, including trip number, number of trip legs, and the 

presence of home-based work/shopping trip (figure 50).  

 

Figure 49. Screenshot. Hometrip variable in the dataset (example from R Studio). 

 

Figure 50. Screenshot. Data format of the tour-based model (example from R Studio). 
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Logic of Defining a Primary Trip 

After grouping all independent trips into tour-based trips, several rules are applied to each tour to 

determine the primary trip. First, the research team assumes that if a tour includes a HBW trip 

(especially, home to work), that trip is defined as the primary trip, indicating that the primary 

purpose is HBW, and primary mode is what the traveler used for the HBW trip. If a tour does not 

include HBW, a secondary trip with the longest travel time is defined as the primary trip.  

PROFILES OF TOUR-BASED TRIPS 

Data exploration demonstrates that 62 percent of tour trips include only one trip leg (figure 51), 

meaning that they consist of one primary tour and a return trip. That is, 38 percent of tour trips 

have multiple trip legs. It tells us that two thirds of tours are quick trips, but there is a 

nonnegligible portion of complex travel, including multiple stops and corresponding available 

modes, which strongly support the necessity of the implementation of a tour-based model. The 

research team further looks into the share of tour trips with a single trip leg by primary mode for 

each tour. As expected, auto has a relatively lower share of a single leg (47 percent) compared to 

other primary modes. One possible explanation is that most travelers tend to prefer auto when 

they plan multiple trips within a tour because auto provides better accessibility and mobility. On 

the other hand, shares of a single leg for taxi and walk/bike are 78 and 82 percent, respectively, 

which is a plausible result. It shows trips made by taxi and walk/bike are mostly independent and 

sole tours with primary and return trips. 
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Figure 51. Bar graph. Shares of tour trips with 

a single trip leg by primary mode. 

Figure 52 also depicts purpose-specific characteristics of tour-based trips. A majority of tours 

only include a single trip, and shares decrease as the number of trip legs increase, which are 

plausible results and consistent with the aforementioned result (figure 51).  
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Figure 52. Histograms. Distributions of the number of trip legs by trip purpose. 

MODEL SPECIFICATIONS 

Similar to the trip-based mode choice model (chapter 6), the tour-based model is estimated only 

for the “all purpose” including HBW, HBO, and NHB. For future estimation, purpose-specific 
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mode choice models may need to be developed because utility functions and magnitude of 

explanatory variables differ by trip purpose. As the research team clarified, however, the ultimate 

goal of this research is to develop an improved mode choice model in the regional behavior 

context. Thus, a single tour-based model covering all purposes is proposed in this research. Also, 

as shown in chapter 6, it is further classified into two parts based on travel distance (i.e., a 

threshold of 50 miles) since general travel behavior and mode choice sets are dissimilar between 

short- and long-distance trips. However, estimation of the tour-based model is confined to short-

distance trips since: (1) a vast majority of trips in the NHTS are short-distance trips within 

50 miles, and (2) estimating the mode choice model in chapter 6 also is implemented only for the 

short-distance model. 

Overall Structure 

The tour-based model consists of two specific models: tour and trip models. The theoretical 

hypothesis in organizing such structure is that, as mentioned, travelers first determine a primary 

purpose and mode, which is called the tour mode, and then the rest of trips are made conditional 

on the primary trip. That is, the tour model only includes a single primary trip (i.e., one primary 

trip per tour), and the trip model includes the remaining trips within a tour (multiple secondary 

trips per tour). In estimation of both models, unequal choice sets are constructed based on the 

same theory and approach described in chapter 5. 

Tour Model 

The research team regrouped the two-level mode choice set of the tour model, including four 

alternatives at the upper nest (i.e., auto, bike/walk, taxi, and transit). The bike/walk mode was 

separated in the trip-based model; however, that specification does not work for the tour-based 
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model. At the lower level, auto is divided into driver and passenger, whereas transit is not split 

into two specific modes (i.e., the nesting parameter for transit was not significant). Thus, the 

final model choice set includes six specific modes as illustrated in figure 53. 

 

Figure 53. Model diagram. Mode choice set with a nested structure (tour model). 

Trip Model 

The structure of the mode choice set for the trip model is identical to that of the conventional 

trip-based model. It consists of the two-level nested structure; five alternatives are at the upper 

level (i.e., auto, bike, walk, taxi, and transit). At the lower level, auto is divided into driver, and 

transit is split into two specific alternatives based on whether access/egress modes are motorized 

or not. Consequently, the final model choice set includes seven specific modes, as illustrated in 

figure 54. 

 

Figure 54. Model diagram. Mode choice set with a nested structure (trip model). 
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Explanatory Variables 

The research team uses the same set of explanatory variables that was used to estimate the 

conventional trip-based model in chapter 6. The final set of explanatory variables comprises 

three categories, including mode attributes, SED traits, and accessibility. Table 40 shows the 

mode attribute variables. Travel time is classified into IVTT and OVTT. All modes have IVTT, 

but car and transit only have OVTT. Concerning public transit, three specific OVTT indicators, 

including terminal, waiting, and transfer times are merged altogether to calculate total OVTT. 

Travel cost is a single variable combining fuel cost, parking fee (only for car), and transit fare 

(only for transit).  

Table 41 shows the SED variables. They are grouped into individual and household levels, and 

two additional variables―active driver and vehicle sufficiency―are created to explain whether 

individuals are able to drive and own available personal automobiles in their household. 
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Table 40. Mode attribute variables of the tour-based mode choice model. 

Variable Mode Description 

In-vehicle Travel Time 

(IVTT)a 

Car  

Taxi 
Driving time 

Transitg On-board time 

Bike Biking time 

Walk Walking time 

Out-of-vehicle Travel 

Time (OVTT) 

Terminal time 

Carb 

Urban = 5 minutes 

Suburban = 3 minutes 

Rural = 1 minute 

Transitc,g 

(1) Walking time from/to a station or 

(2) driving time from/to a station if trip 

length is longer than 1 mile 

Waiting time,  

Transfer time 
Transitg 

High frequency = half of headway 

Low frequency = 5 minutes 

Travel Cost 

(US dollars) 

Fueld Car 
𝑇𝑟𝑖𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑖𝑙𝑒)

𝐺𝑎𝑠 𝑚𝑖𝑙𝑒𝑎𝑔𝑒 (𝑚𝑝𝑔)
 × 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 ($/𝑔) 

Toll fee Car Zero (not considered) 

Parking fee 

(monthly)e 
Car 

Average daily parking fee for 

(1) those who are full-time workers and 

work in urban areas, or 

(2) those who are university (or 

graduate) students 

Parking fee 

(one-time) 
Car 

Urban = $4/hr ($24/day more than 6 hrs) 

Second city = $1 

Other = $0 

Fare 

(monthly pass)f 
Transitg 

Average daily transit fare (e.g., $4/day) 

for those who are full-time workers or 

students 

Fare 

(one-time) 
Transitg 

Assign transit fares depending on the 

transit line 
a IVTT was obtained from Google API. 
b Car depends on locations of origin and destination. 
c Transit was obtained from Google API. In particular, the threshold of 1 mile is determined based on the TCQSM. 
d Official fuel economy data, including EVs and hybrid cars, were used. 
e Parking fee (monthly) was applied to specific trip purposes (commute to work or attend school). 
f Full-time workers or students were assumed to purchase the monthly pass for all trips. 
g Information about available transit lines from Google API and relevant transit fare information, which were manually 

collected from MPO agencies, are combined. 
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Table 41. Socioeconomic variables of the tour-based mode choice model. 

Category Variable Description 

Individual 

Female 1 = Yes, 0 = No 

Age Continuous 

Under 16 years 1 = Yes, 0 = No 

Education Categorical 

Employment 1 = worker, 0 = non-worker 

Active driver 1 = Yes, 0 =No 

Household 

Household size Continuous 

Vehicle ownership Continuous 

Income Categorical 

Number of drivers Continuous 

Vehicle sufficiency 1 = Yes, 0 = No 

Attitudes Perceived health status 1 (excellent) to 5 (poor) 
Note: All socioeconomic variables are from the 2017 NHTS dataset. 

Regarding transit accessibility, seven specific variables are initially chosen to estimate the final 

model, indicating to what extent public transit is accessible to travelers (table 42 and table 35) as 

introduced in tasks 1 and 4.  

Table 42. Accessibility variables of the mode choice model. 

Category Variable Description 

AllTransit Score Performance score 1 (poor) to 10 (excellent) 

Transit Accessibility 

Walkable neighborhood Continuous 

# of jobs (workers) accessible 

in 30 min transit ride 
Continuous 

Transit connectivity index 0 (poor) to 35 (excellent) 

Transit trip per week Continuous 

# of transit stops within 

½ miles 
Continuous 

# of high frequency transit 

routes within ½ miles 
Continuous 

Note: Accessibility variables were defined using AllTransit data provided by the Center for Neighborhood Technology. 

Combination Rules for Tour and Trip Modes 

In order to take associations between tour and trip mode choices in reality into account, thereby 

being conditioned to narrow modes down to specific available alternatives, the research team 

develops combination rules (table 43). Basically, all trip modes are constrained by the primary 
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tour mode via this rule, and each trip mode is confined based on what the tour mode is. The final 

correspondence rules are determined based on the following principles: 

• Taxi and transit trips are not allowed when the tour mode is Driver within the same tour. 

• When the tour mode is Passenger, all trip modes other than Driver are available. 

• Bike/Walk and Taxi tours do not include auto trips for particular trip legs within the same 

tour.  

• With respect to Transit tours, only the Driver alternative is not allowed for the trip mode 

since driving in a transit tour is illogical behavior. 

Table 43. Combination rules for tour and trip modes. 

Tour Mode 
Trip Mode 

Driver Passenger Bike/Walk Taxi Transit 

Driver ● ● ●   

Passenger  ● ● ● ● 

Bike/Walk   ● ● ● 

Taxi   ● ● ● 

Transit  ● ● ● ● 

Note: ● indicates that the trip mode is available given the corresponding tour mode. 

ESTIMATION RESULT 

The final estimation result is presented in table 36. As described above, the research team 

develops two specific models: tour and trip models. The tour model is first estimated, then the 

trip model is developed sequentially (please note that both models are all-purpose models based 

on the ultimate goal of this research to propose an improved method for the Georgia Statewide 

Model, as discussed in chapter 5). While initial attempts include multinomial logit models with 

various explanatory variables, those models did not exhibit reasonable goodness of fit. As a 

result, nested logit forms with two hierarchies are specified in the final model.  
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Tour Model 

As shown in table 44 and equation 9, the final tour model exhibits an acceptable model fit 

(adjusted rho squared = 0.328). All explanatory variables except for two taxi-related variables 

are statistically significant at the 5 percent level with the expected signs. The estimation result is 

similar to the traditional mode choice model presented in chapter 5: (1) travelers are much more 

likely to prefer private modes (auto) over other modes (walk/bike or public transit); (2) travel 

time variables are alternative-specific, whereas travel cost is a generic variable with all negative 

impacts on travelers’ utility; (3) coefficients for taxi tend to be insignificant (constant and OVTT 

are not significant at the 10 percent level); (4) driving availability (i.e., active driver and vehicle 

sufficiency) is still a critical indicator explaining mode choice behavior, and (5) transit 

accessibility has a positive influence on choosing public transit. Regarding VOTTS, the tour 

model exhibits reasonable values; VOTTS for driver, passenger, taxi, and public transit are 

$47/hr, $37/hr, $54/hr, and $10/hr, respectively, which are significantly lower than previous 

values obtained from the conventional mode choice model. In particular, VOTTS for driving is 

decreased by almost half of the former one (it was $82/hr), which strongly supports the research 

hypothesis and the motivation for proposing the tour-based model. 
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Table 44. Tour-based mode choice model (tour model). 

Explanatory Variable Coefficient SEb Z-value P-value 

Alternative Specific Constant     

Drive 1.762 0.074 23.928 <0.001 

Passenger 0.667 0.041 16.313 <0.001 

Ecoa - - - - 

Taxi -0. 615 0.456 -1.350 0.177 

Public transit -1.963 0.102 -19.311 <0.001 

Mode Attributes     

IVTT_auto -0.098 0.015 -6.430 <0.001 

IVTT_passenger -0.078 0.010 -8.097 <0.001 

IVTT_taxi -0.113 0.038 -2.981 0.003 

IVTT_PT -0.021 0.002 -10.355 <0.001 

OVTT_passenger -0.762 0.140 -5.433 <0.001 

OVTT_taxi -0.183 0.215 -0.851 0.395 

OVTT_public transit -0.112 0.024 -4.690  

Total time_eco -0.193 0.060 -3.196 0.001 

Cost -0.126 0.015 -8.301 <0.001 

SED     

Female -0.151 0.032 -4.777 0.005 

Age -0.087 0.028 -3.090 0.002 

Active driver 0.261 0.010 25.213 <0.001 

Vehicle sufficiency 0.836 0.040 20.961 <0.001 

Accessibility     

Average performance score 0.136 0.013 10.321 <0.001 

Tour Characteristics     

Shopping trips within a tour (dummy) 0.341 0.041 8.412 <0.001 

Number of stops within a tour_auto 0.265 0.024 10.994 <0.001 

Number of stops within a tour_PT -0.108 0.006 -18.004 <0.001 

Nesting Parameters     

Auto 0.902 0.048 18.831 <0.001 

N = 19,318 

LL(c) = -14,897.83 

LL(β) = -9,993.34 

Adjusted ρ2 (MS)= 0.328 
a Eco includes walk and bike modes. It is defined as the reference mode in the final model. 
b SE is the standard error. 

Trip Model 

Table 45 and equation 10 demonstrate the estimation result of the trip model. It produces 

plausible results and a respectable model fit with adjusted rho-squared (market shared) of 0.368. 
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A vast majority of coefficients are statistically significant at the 5 percent level, except the taxi-

related coefficients. It tells us that the current variables cannot explain travelers’ utility for taxi, 

calling for additional investigation on potential factors associated with the taxi mode.  

𝑈(𝐷𝑟𝑖𝑣𝑒𝑟) = 1.762 − 0.098(𝐼𝑉𝑇𝑇𝑎𝑢𝑡𝑜) − 0.126(𝑐𝑜𝑠𝑡)
+ 0.836 (𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) +  0.261(𝑎𝑐𝑡𝑖𝑣𝑒 𝑑𝑟𝑖𝑣𝑒𝑟)
+ 0.479(𝑤𝑜𝑟𝑘𝑒𝑟) + 0.341(𝑠ℎ𝑜𝑝)
+  0.265(# 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑜𝑢𝑟𝑎𝑢𝑡𝑜) 

 

𝑈(𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟) = 0.667 − 0.078(𝐼𝑉𝑇𝑇𝑝𝑎𝑥) − 0.762(𝑂𝑉𝑇𝑇𝑝𝑎𝑥) − 0.126(𝑐𝑜𝑠𝑡) 

 

𝑈(𝐵𝑖𝑘𝑒, 𝑊𝑎𝑙𝑘) = 0 − 0.193(𝑇𝑇) − 0.151(𝑓𝑒𝑚𝑎𝑙𝑒) − 0.087(𝑎𝑔𝑒)
+ 0.136(𝑎𝑣𝑔. 𝑝𝑠) 

 

𝑈(𝑇𝑎𝑥𝑖) =  −0.615 − 0.113(𝐼𝑉𝑇𝑇𝑡𝑎𝑥𝑖) − 0.183(𝑂𝑉𝑇𝑇𝑡𝑎𝑥𝑖) − 0.126(𝑐𝑜𝑠𝑡) 

 

𝑈(𝑇𝑟𝑎𝑛𝑠𝑖𝑡) =  −1.963 − 0.021(𝐼𝑉𝑇𝑇𝑃𝑇) − 0.112(𝑂𝑉𝑇𝑇𝑃𝑇) − 0.126(𝑐𝑜𝑠𝑡)
− 0.087(𝑎𝑔𝑒) + 0.136(𝑎𝑣𝑔. 𝑝𝑠)
− 0.108(# 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑜𝑢𝑟𝑃𝑇) 

 (10) 

The estimation result is consistent with the previous models presented in this research (i.e., the 

conventional mode choice models in chapter 5 and the tour model). Three types of explanatory 

variables (i.e., mode attributes, SED, and accessibility) are incorporated in the final model. It 

shows that: (1) travelers tend to prefer private modes to public transit; (2) travel time and cost 

have negative impacts on travelers’ utility, as expected; (3) female travelers are more likely to 

use automobiles as a driver or passenger, while younger people tend to prefer public transit; and 

(4) transit accessibility is directly associated with preference for public transit and bike/walk (it 

suggests that proximity to transit stations can encourage people to use both public transit and 

nonmotorized modes, including walking and biking). 

Most notably, two additional explanatory variables indicating the number of shopping trips and 

stops (i.e., number of destinations) within each tour are selected in the trip model. It offers clear 

evidence that tour characteristics need to be considered in the mode choice model, pointing to the 
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necessity of adopting a tour-based model to fully describe travelers’ mode choice behavior. With 

respect to VOTTS, the trip model also demonstrates plausible outcomes. VOTTS for driver, 

passenger, taxi, and public transit are $37/hr, $34/hr, $40/hr, and $12/hr, respectively, which are 

similar to those in the tour model and significantly lower than the trip-based mode choice model. 
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Table 45. Tour-based mode choice model (trip model). 

Explanatory Variable Coefficient SEd Z-value P-value 

Alternative Specific Constant     

Drive 1.361 0.179 7.610 <0.001 

Passenger 0.807 0.127 6.350 <0.001 

Ecoa - - - - 

Taxi 0.366 0.574 0.638 0.177 

Public transit (motorized AE) -1.462 0.142 -10.311 <0.001 

Public transit (nonmotorized AE) -1.787 0.113 -15.867 <0.001 

Mode Attributes     

IVTT_autob -0.086 0.002 -43.93 <0.001 

IVTT_passenger -0.078 0.003 -24.441 <0.001 

IVTT_taxi -0.093 0.033 -2.785 0.005 

IVTT_PT -0.028 0.001 -38.915 <0.001 

OVTT_taxi -0.126 0.004 -29.121 0.395 

Total time_ecoc -0.131 0.015 -8.511 <0.001 

Cost -0.138 0.004 -34.058 <0.001 

SED     

Female 0.162 0.021 7.857 <0.001 

Age -0.031 0.010 -3.104 0.001 

Active driver 0.430 0.034 12.534 <0.001 

Vehicle sufficiency 0.677 0.022 31.097 <0.001 

Accessibility     

Average performance score 0.074 0.026 2.831 0.005 

Tour Characteristics     

Number of shopping trips within a tour 0.203 0.004 48.012 <0.001 

Number of stops within a tour -0.167 0.005 -30.802 <0.001 

Nesting Parameters     

Auto 0.847 0.068 12.514 <0.001 

Public transit 0.285 0.091 3.121 0.002 
N = 34,197 

LL(c) = -26,561.04 

LL(β) = -16,767.57 

Adjusted ρ2 (MS)= 0.368 
a Walk is the reference mode. 
b This coefficient is also used for OVTT for transit with motorized AE. 
c This coefficient is also used for OVTT for transit with nonmotorized AE. 
d SE is the standard error. 



 

151 

𝑈(𝐷𝑟𝑖𝑣𝑒𝑟) = 1.361 − 0.086(𝐼𝑉𝑇𝑇𝑎𝑢𝑡𝑜) − 0.138(𝑐𝑜𝑠𝑡)
+ 0.677 (𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) +  0.430(𝑎𝑐𝑡𝑖𝑣𝑒 𝑑𝑟𝑖𝑣𝑒𝑟)
+ 0.162(𝑓𝑒𝑚𝑎𝑙𝑒) + 0.320(# 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑜𝑢𝑟𝑎𝑢𝑡𝑜)
+  0.203(#𝑜𝑓 𝑠ℎ𝑜𝑝𝑝𝑖𝑚𝑔 𝑡𝑟𝑖𝑝𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑜𝑢𝑟) 

 

𝑈(𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟) = 0.807 − 0.078(𝐼𝑉𝑇𝑇𝑝𝑎𝑥) − 0.138(𝑐𝑜𝑠𝑡) + 0.162(𝑓𝑒𝑚𝑎𝑙𝑒) 

 

𝑈(𝐵𝑖𝑘𝑒, 𝑊𝑎𝑙𝑘) = 0 − 0.131(𝑇𝑇) − 0.031(𝑎𝑔𝑒) + 0.074(𝑎𝑣𝑔. 𝑝𝑠)
− 0.167(# 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑜𝑢𝑟𝑛𝑜𝑛−𝑎𝑢𝑡𝑜) 

 

𝑈(𝑇𝑎𝑥𝑖) =  0.366 − 0.093(𝐼𝑉𝑇𝑇𝑡𝑎𝑥𝑖) − 0.126(𝑂𝑉𝑇𝑇𝑡𝑎𝑥𝑖) − 0.138(𝑐𝑜𝑠𝑡) 

 

𝑈(𝑃𝑇𝑚𝑜𝑡𝑜𝑟) =  −1.462 − 0.028(𝐼𝑉𝑇𝑇𝑃𝑇) − 0.086(𝑂𝑉𝑇𝑇𝑃𝑇) − 0.138(𝑐𝑜𝑠𝑡)
− 0.031(𝑎𝑔𝑒) + 0.074(𝑎𝑣𝑔. 𝑝𝑠)
− 0.167(# 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑜𝑢𝑟𝑛𝑜𝑛−𝑎𝑢𝑡𝑜) 

 

𝑈(𝑃𝑇𝑛𝑜𝑛−𝑚𝑜𝑡𝑜𝑟) =  −1.787 − 0.028(𝐼𝑉𝑇𝑇𝑃𝑇) − 0.131(𝑂𝑉𝑇𝑇𝑃𝑇) − 0.138(𝑐𝑜𝑠𝑡)
− 0.031(𝑎𝑔𝑒) + 0.074(𝑎𝑣𝑔. 𝑝𝑠)
− 0.167(# 𝑜𝑓 𝑠𝑡𝑜𝑝𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑡𝑜𝑢𝑟𝑛𝑜𝑛−𝑎𝑢𝑡𝑜) 

 (11) 

LIMITATIONS ON APPLICATION OF THE TOUR-BASED APPROACH TO 

THE GSTDM 

At present, there are several limitations on application of the tour-based mode choice model to 

the GSTDM, although the newly developed model well describes the current travelers’ choice 

behavior. First and foremost, the proposed model specification and the definition of trips is not 

compatible with the current GSTDM, which is the trip-based model. Specifically, O–D tables 

obtained after the trip distribution stage denote zone-to-zone trips for each zone pair. In the mode 

choice stage, those trips are divided into several mode-specific trips via a choice model. In this 

process, all trips are treated as independent, and trip chaining and relationship between trips are 

not considered. To take tour-based characteristics into account, those independent trips need to 

be grouped into a tour that belongs to the same home-to-home loop for each traveler. However, 

this framework cannot be applied in the middle of the four-step stage; a completely different 

modeling framework for the tour-based approach needs to be established. Thus, additional 

exploration is called for in order to propose a completed modeling framework. 
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Second, some variables indicating tour characteristics incorporated in the tour-based model will 

not be available when estimating future choices because those variables (e.g., the number of 

stops made within a tour) cannot be determined in the current trip-based modeling framework, 

meaning that additional methodologies need to be implemented to define them. That is, separate 

models are also required to account for characteristics of trip chaining since the traditional choice 

model does not incorporate tour-related indicators. For example, ARC implements an activity-

based model, which is called Coordinated Travel-Regional Activity Based Modeling Platform 

(CT-RAMP), based on the same modeling approach. Interestingly, CT-RAMP separately 

estimates several choice and frequency models, including time-of-day choice, intermediate stop 

destination choice, and tour stop frequency models. These are necessary to identify tour 

characteristics so that critical tour-based variables can be defined and utilized in the tour-based 

choice model as explanatory variables.  
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CHAPTER 8. SUMMARY AND CONCLUSIONS 

In this report, the research team outlined a number of areas for improvement in the Georgia 

Statewide Travel Demand Model. We focused on the development of a vehicle ownership 

model, a time-of-day segmentation, and destination choice and mode choice models for the 

GSTDM. By incorporating these updates, the statewide model can have a more realistic and 

accurate representation of travel through the state of Georgia. 

The main data source used to develop these analyses was the 2017 National Household Travel 

Survey, which contains data on over 8000 households and 56,000 trips for the state of Georgia. 

We worked closely with the team members of another GDOT project, “Analysis of the Georgia 

Add-on to the 2016–2017 National Household Travel Survey” who were already working on a 

2017 NHTS analysis and provided this project with a more enriched 2017 NHTS dataset on 

which to build our analysis. We further augmented the 2017 NHTS data with multiple other 

sources based on our needs, including adding AllTransit data with variables on transit access, 

Census data to add extra geographical features, distance skim files to add distances among TAZs, 

and Google API to add travel information on multiple mode/trip characteristics. The details on 

data augmentations are discussed more closely in each of the chapters of this report. 

In the first task of this project, we started with investigating the vehicle ownership choice of 

Georgian households. We used various disaggregate models to gain insight into how Georgian 

households choose the number of vehicles they own, and compared these models on their 

insights and prediction accuracy. These results are especially useful to the GSTDM should 

GDOT decide to upgrade the current trip-based model to a disaggregate activity-based model in 

the future. For the current aggregate trip-based GSTDM, however, we estimated another linear 
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model whose results could have been correctly aggregated to the TAZ level from the household 

level. The output of this task, the average vehicle ownership for all TAZs, is ready to be used in 

the other steps of the statewide model. 

In the second task of this project, we investigated methods to introduce time of day in the 

GSTDM. After reviewing the different time-of-day methodologies in the literature, and in 

consultation with the Office of Planning at GDOT, we adopted a “trips-in-motion” approach. We 

discussed the details of this approach and how it compares with the other traditional TOD 

methods, and concluded that this approach produces a more accurate estimate of the proportion 

of trips that occur in each time period. Analyzing the temporal distribution of the 2017 NHTS 

data, we proposed four TOD periods, namely AM peak, Midday, PM peak, and Night periods, 

and presented shares of trips, or time-of-day factors, by each period and trip purpose, along with 

TOD factors for through trips. Those newly estimated factors can be utilized in the current 

GSTDM when predicting peak-time or hourly traffic volumes. Notably, the research team 

proposed applying the TOD factors right after the trip-generation step, not after the trip-

assignment step (postprocessing), which will lead to more accurate travel forecasts after 

accounting for time-specific travel time and traffic congestion. 

In the third task of this project, we focused on improving the trip-distribution step in the 

GSTDM. Reviewing the literature and the practice in other states, we proposed using a 

destination choice model in lieu of the gravity model currently used by the GSTDM for the 

short-distance trips. We used multiple data sources to further complement the 2017 NHTS 

dataset, and estimated 12 destination choice models, one for each time of day (AM peak, 

Midday, PM peak, Night) and trip purpose (HBW, HBO, NHB). The models showed promising 



 

155 

results, and provide more flexibility in including socioeconomic characteristics in trip 

distribution. 

In the fourth task of this project, the team aimed to improve the modal split step of the GSTDM. 

We used the 2017 NHTS Georgia trip file and used the Google API to add data on alternative 

mode characteristics. To better understand mode choice, the research team separated short-

distance trips and long-distance trips. We tested multiple model structures to get the best short-

distance mode choice results, including MNL and nested MNL. The final model was the nested 

logit model with seven specific modes (driving, passenger, walk, bike, taxi, public transit with 

motorized/nonmotorized first- and last-mile modes). It demonstrated the decent goodness of fit 

with the expected signs, but value of travel time savings for auto (driving and passenger) is 

estimated substantially higher than expected, which may result from the fundamental limitation 

of the traditional trip-based approach. To address this issue, the research team further proposed a 

tour-based model as an additional task (fifth task). Regarding the long-distance trips, however, 

the team could not estimate a satisfactory model because of the relatively small number of long-

distance cases in the NHTS dataset. We, however, provided exploratory insights into long-

distance trips, and discussed recommendations on remedying the lack of long-distance data such 

as collecting and analyzing data from other states that are most similar to Georgia. 

In the fifth task of this project, the team proposed a tour-based mode choice model in the context 

of the GSTDM. It improves the fundamental limitation of the trip-based approach that all trips 

are treated as independent and separated travel (resulting in counterintuitive VOTTS for auto) by 

taking tours into account. A tour includes combined trips with multiple stops that belong to the 

same home-to-home loop. Similar to the traditional mode choice model that the research team 

developed in the fourth task, the tour-based mode choice model is divided into two specific 
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models (short- and long-distance models) based on a threshold of 50 miles. The research team 

developed a single short-distance model including all purposes, given that a vast majority of trips 

in NHTS are shorter than 50 miles and mode-specific models are currently not necessary within 

the frame of the Georgia statewide model. The same set of explanatory variables used in the trip-

based model (fourth task) were incorporated, and the same mode choice structure of a nested 

form were considered in the final model. The estimation model demonstrated a respectable 

model fit, and critical determinants such as mode attributes (travel time and cost) were mostly 

significant at the 5 percent level, with the expected signs. Most importantly, it provided a 

plausible range of VOTTS for auto, which are more consistent with typical VOTTS for auto 

proposed by USDOT and other previous empirical studies. 
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